2022-02-12 18:44:20 +00:00
|
|
|
#!/usr/bin/env python3
|
2022-02-25 21:00:05 +00:00
|
|
|
import aioboto3
|
2022-02-12 18:44:20 +00:00
|
|
|
import aiohttp
|
|
|
|
import asyncio
|
|
|
|
import cv2
|
2022-02-25 21:00:05 +00:00
|
|
|
import hashlib
|
|
|
|
import io
|
|
|
|
import json
|
2022-02-12 18:44:20 +00:00
|
|
|
import numpy as np
|
|
|
|
import os
|
2022-02-27 15:02:55 +00:00
|
|
|
import pymongo
|
2022-02-25 21:00:05 +00:00
|
|
|
import signal
|
2022-02-12 18:44:20 +00:00
|
|
|
import sys
|
2022-07-10 10:15:54 +00:00
|
|
|
import botocore.exceptions
|
2022-02-25 21:00:05 +00:00
|
|
|
from datetime import datetime, timedelta
|
2022-02-16 20:32:56 +00:00
|
|
|
from jpeg2dct.numpy import loads
|
2022-07-10 10:15:54 +00:00
|
|
|
from math import inf
|
2022-02-25 21:00:05 +00:00
|
|
|
from motor.motor_asyncio import AsyncIOMotorClient
|
2022-07-10 10:15:54 +00:00
|
|
|
from prometheus_client import Counter, Gauge, Histogram
|
2022-02-12 18:44:20 +00:00
|
|
|
from sanic import Sanic, response
|
2022-07-11 10:28:22 +00:00
|
|
|
from sanic_json_logging import setup_json_logging
|
2022-07-10 10:15:54 +00:00
|
|
|
from sanic.log import logger
|
2022-02-12 18:44:20 +00:00
|
|
|
from sanic_prometheus import monitor
|
2022-07-10 10:15:54 +00:00
|
|
|
from sanic.response import stream
|
2022-02-27 11:35:03 +00:00
|
|
|
from time import time
|
2022-02-12 18:44:20 +00:00
|
|
|
|
|
|
|
_, url = sys.argv
|
|
|
|
|
2022-07-10 10:15:54 +00:00
|
|
|
AWS_ACCESS_KEY_ID = os.environ["AWS_ACCESS_KEY_ID"]
|
2022-02-25 21:00:05 +00:00
|
|
|
AWS_SECRET_ACCESS_KEY = os.environ["AWS_SECRET_ACCESS_KEY"]
|
2022-07-10 10:15:54 +00:00
|
|
|
|
2022-02-25 21:00:05 +00:00
|
|
|
S3_ENDPOINT_URL = os.environ["S3_ENDPOINT_URL"]
|
|
|
|
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME", "camdetect")
|
2022-02-12 18:44:20 +00:00
|
|
|
MONGO_URI = os.getenv("MONGO_URI", "mongodb://127.0.0.1:27017/default")
|
2022-07-10 10:15:54 +00:00
|
|
|
MONGO_COLLECTION = os.getenv("MONGO_COLLECTION", "eventlog")
|
2022-02-25 21:00:05 +00:00
|
|
|
SOURCE_NAME = os.environ["SOURCE_NAME"]
|
2022-02-12 18:44:20 +00:00
|
|
|
SLIDE_WINDOW = 2
|
|
|
|
DCT_BLOCK_SIZE = 8
|
2022-03-06 06:25:54 +00:00
|
|
|
UPLOAD_FRAMESKIP = 3
|
2022-02-12 18:44:20 +00:00
|
|
|
|
2022-02-25 21:00:05 +00:00
|
|
|
# Percentage of blocks active to consider movement in whole frame
|
|
|
|
THRESHOLD_RATIO = int(os.getenv("THRESHOLD_RATIO", "5"))
|
|
|
|
|
2022-02-16 20:32:56 +00:00
|
|
|
CHUNK_BOUNDARY = b"\n--frame\nContent-Type: image/jpeg\n\n"
|
2022-02-12 18:44:20 +00:00
|
|
|
|
2022-07-10 10:15:54 +00:00
|
|
|
hist_active_blocks_ratio = Histogram(
|
|
|
|
"camtiler_active_blocks_ratio",
|
|
|
|
"Ratio of active DCT blocks",
|
|
|
|
["roi"],
|
|
|
|
buckets=(0.01, 0.02, 0.05, 0.1, 0.5, inf))
|
|
|
|
hist_processing_latency = Histogram(
|
|
|
|
"camtiler_frame_processing_latency_seconds",
|
|
|
|
"Frame processing latency",
|
|
|
|
buckets=(0.01, 0.05, 0.1, 0.5, 1, inf))
|
|
|
|
hist_upload_latency = Histogram(
|
|
|
|
"camtiler_frame_upload_latency_seconds",
|
|
|
|
"Frame processing latency",
|
|
|
|
buckets=(0.1, 0.5, 1, 5, 10, inf))
|
|
|
|
counter_events = Counter(
|
|
|
|
"camtiler_events",
|
|
|
|
"Count of successfully processed events")
|
|
|
|
counter_frames = Counter(
|
|
|
|
"camtiler_frames",
|
|
|
|
"Count of frames",
|
|
|
|
["stage"])
|
|
|
|
counter_dropped_frames = Counter(
|
|
|
|
"camtiler_dropped_frames",
|
|
|
|
"Frames that were dropped due to one of queues being full",
|
|
|
|
["stage"])
|
|
|
|
counter_discarded_bytes = Counter(
|
|
|
|
"camtiler_discarded_bytes",
|
2022-02-12 18:44:20 +00:00
|
|
|
"Bytes that were not not handled or part of actual JPEG frames")
|
2022-07-10 10:15:54 +00:00
|
|
|
counter_receive_bytes = Counter(
|
|
|
|
"counter_receive_bytes",
|
2022-02-12 18:44:20 +00:00
|
|
|
"Bytes received over HTTP stream")
|
2022-07-10 10:15:54 +00:00
|
|
|
counter_transmit_bytes = Counter(
|
|
|
|
"camtiler_transmit_bytes",
|
2022-02-12 18:44:20 +00:00
|
|
|
"Bytes transmitted over HTTP streams")
|
2022-07-10 10:15:54 +00:00
|
|
|
counter_receive_frames = Counter(
|
|
|
|
"camtiler_receive_frames",
|
|
|
|
"Frames received from upstream")
|
|
|
|
counter_transmit_frames = Counter(
|
|
|
|
"camtiler_transmit_frames",
|
|
|
|
"Frames transmitted to downstream consumers")
|
|
|
|
counter_emitted_events = Counter(
|
|
|
|
"camtiler_emitted_events",
|
2022-02-12 18:44:20 +00:00
|
|
|
"Events emitted")
|
2022-07-10 10:15:54 +00:00
|
|
|
counter_receive_chunks = Counter(
|
|
|
|
"camtiler_receive_chunks",
|
2022-02-16 20:32:56 +00:00
|
|
|
"HTTP chunks received")
|
|
|
|
counter_errors = Counter(
|
2022-07-10 10:15:54 +00:00
|
|
|
"camtiler_errors",
|
2022-02-13 17:53:47 +00:00
|
|
|
"Upstream connection errors",
|
2022-07-10 10:15:54 +00:00
|
|
|
["stage", "exception"])
|
2022-02-20 07:53:19 +00:00
|
|
|
gauge_last_frame = Gauge(
|
2022-07-10 10:15:54 +00:00
|
|
|
"camtiler_last_frame_timestamp_seconds",
|
|
|
|
"Timestamp of last frame",
|
|
|
|
["stage"])
|
|
|
|
gauge_queue_frames = Gauge(
|
|
|
|
"camtiler_queue_frames",
|
|
|
|
"Numer of frames in a queue",
|
|
|
|
["stage"])
|
|
|
|
gauge_build_info = Gauge(
|
|
|
|
"camtiler_build_info",
|
|
|
|
"Build info",
|
|
|
|
["git_hash"])
|
|
|
|
|
|
|
|
gauge_build_info.labels(os.getenv("GIT_COMMIT", "null")).set(1)
|
2022-02-25 21:00:05 +00:00
|
|
|
|
|
|
|
# Reset some gauges
|
2022-07-10 10:15:54 +00:00
|
|
|
gauge_queue_frames.labels("download").set(0)
|
|
|
|
gauge_queue_frames.labels("hold").set(0)
|
|
|
|
gauge_queue_frames.labels("upload").set(0)
|
2022-02-25 21:00:05 +00:00
|
|
|
|
|
|
|
assert SLIDE_WINDOW <= 8 # This is 256 frames which should be enough
|
|
|
|
|
|
|
|
|
2022-02-27 11:12:22 +00:00
|
|
|
async def upload(bucket, blob: bytes, thumb: bytes, event_id):
|
2022-02-25 21:00:05 +00:00
|
|
|
"""
|
2022-07-10 10:15:54 +00:00
|
|
|
Upload single frame to S3 bucket
|
2022-02-25 21:00:05 +00:00
|
|
|
"""
|
|
|
|
|
|
|
|
# Generate S3 path based on the JPEG blob SHA512 digest
|
|
|
|
fp = hashlib.sha512(blob).hexdigest()
|
|
|
|
path = "%s/%s/%s/%s.jpg" % (fp[:4], fp[4:8], fp[8:12], fp[12:])
|
2022-02-27 11:12:22 +00:00
|
|
|
|
2022-07-10 10:15:54 +00:00
|
|
|
try:
|
|
|
|
await bucket.upload_fileobj(io.BytesIO(thumb), "thumb/%s" % path)
|
|
|
|
await bucket.upload_fileobj(io.BytesIO(blob), path)
|
|
|
|
except (botocore.exceptions.ClientError, botocore.exceptions.BotoCoreError) as e:
|
|
|
|
j = "%s.%s" % (e.__class__.__module__, e.__class__.__name__)
|
|
|
|
counter_errors.labels("upload", j).inc()
|
2022-02-25 21:00:05 +00:00
|
|
|
|
|
|
|
# Add screenshot path to the event
|
|
|
|
app.ctx.coll.update_one({
|
|
|
|
"_id": event_id
|
|
|
|
}, {
|
|
|
|
"$addToSet": {
|
|
|
|
"screenshots": path,
|
|
|
|
}
|
|
|
|
})
|
|
|
|
|
2022-07-10 10:15:54 +00:00
|
|
|
counter_frames.labels("stored").inc()
|
|
|
|
now = datetime.utcnow()
|
|
|
|
gauge_last_frame.labels("upload").set(now.timestamp())
|
2022-02-25 21:00:05 +00:00
|
|
|
# TODO: Handle 16MB maximum document size
|
|
|
|
|
|
|
|
|
|
|
|
async def uploader(queue):
|
|
|
|
"""
|
|
|
|
Uploader task grabs JPEG blobs from upload queue and uploads them to S3
|
|
|
|
"""
|
2022-07-10 10:15:54 +00:00
|
|
|
session = aioboto3.Session()
|
|
|
|
async with session.resource("s3",
|
|
|
|
aws_access_key_id=AWS_ACCESS_KEY_ID,
|
|
|
|
aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
|
|
|
|
endpoint_url=S3_ENDPOINT_URL) as s3:
|
2022-02-25 21:00:05 +00:00
|
|
|
bucket = await s3.Bucket(S3_BUCKET_NAME)
|
|
|
|
while True:
|
2022-07-10 10:15:54 +00:00
|
|
|
dt, blob, thumb, event_id = await queue.get()
|
|
|
|
gauge_queue_frames.labels("upload").set(queue.qsize())
|
2022-02-27 11:12:22 +00:00
|
|
|
await upload(bucket, blob, thumb, event_id)
|
2022-07-10 10:15:54 +00:00
|
|
|
counter_frames.labels("uploaded").inc()
|
|
|
|
hist_upload_latency.observe(
|
|
|
|
(datetime.utcnow() - dt).total_seconds())
|
2022-02-25 21:00:05 +00:00
|
|
|
|
|
|
|
|
|
|
|
class ReferenceFrame():
|
|
|
|
"""
|
|
|
|
ReferenceFrame keeps last 2 ^ size frames to infer the background scene
|
|
|
|
compared to which motion is detected
|
|
|
|
|
|
|
|
This is pretty much what background subtractor does in OpenCV,
|
|
|
|
only difference is that we want have better performance instead of
|
|
|
|
accuracy
|
|
|
|
"""
|
|
|
|
class NotEnoughFrames(Exception):
|
|
|
|
pass
|
|
|
|
|
|
|
|
def __init__(self, size=SLIDE_WINDOW):
|
|
|
|
self.y = []
|
|
|
|
self.cumulative = None
|
|
|
|
self.size = size
|
|
|
|
|
|
|
|
def put(self, y):
|
|
|
|
if self.cumulative is None:
|
|
|
|
self.cumulative = np.copy(y)
|
|
|
|
else:
|
|
|
|
self.cumulative += y
|
|
|
|
self.y.append(y)
|
|
|
|
if len(self.y) > 2 ** self.size:
|
|
|
|
self.cumulative -= self.y[0]
|
|
|
|
self.y = self.y[1:]
|
|
|
|
|
|
|
|
def get(self):
|
|
|
|
if len(self.y) == 2 ** self.size:
|
|
|
|
return self.cumulative >> SLIDE_WINDOW
|
|
|
|
else:
|
|
|
|
raise self.NotEnoughFrames()
|
2022-02-12 18:44:20 +00:00
|
|
|
|
2022-02-16 20:32:56 +00:00
|
|
|
|
2022-02-25 21:00:05 +00:00
|
|
|
async def motion_detector(reference_frame, download_queue, upload_queue):
|
|
|
|
"""
|
|
|
|
Motion detector grabs JPEG blobs and Y channel coefficients
|
|
|
|
from download queue, performs motion detection and pushes relevant
|
|
|
|
JPEG blobs to upload queue going to S3
|
|
|
|
"""
|
|
|
|
event_id = None
|
|
|
|
differing_blocks = []
|
2022-03-06 06:25:54 +00:00
|
|
|
uploads_skipped = 0
|
|
|
|
|
|
|
|
# Hold queue keeps frames that we have before motion event start timestamp
|
|
|
|
hold_queue = asyncio.Queue(2 ** SLIDE_WINDOW)
|
|
|
|
|
2022-02-25 21:00:05 +00:00
|
|
|
while True:
|
2022-02-27 11:12:22 +00:00
|
|
|
dt, blob, dct, thumb = await download_queue.get()
|
2022-07-10 10:15:54 +00:00
|
|
|
gauge_queue_frames.labels("download").set(download_queue.qsize())
|
2022-02-27 11:12:22 +00:00
|
|
|
app.ctx.last_frame, app.ctx.dct = blob, dct
|
2022-02-25 21:00:05 +00:00
|
|
|
|
|
|
|
# Signal /bypass and /debug handlers about new frame
|
|
|
|
app.ctx.event_frame.set()
|
|
|
|
app.ctx.event_frame.clear()
|
|
|
|
|
2022-02-27 11:12:22 +00:00
|
|
|
# Separate most significant luma value for each DCT (8x8 pixel) block
|
|
|
|
y = np.int16(dct[0][:, :, 0])
|
|
|
|
|
2022-02-25 21:00:05 +00:00
|
|
|
reference_frame.put(y)
|
|
|
|
try:
|
|
|
|
app.ctx.mask = cv2.inRange(cv2.absdiff(y,
|
|
|
|
reference_frame.get()), 25, 65535)
|
|
|
|
except ReferenceFrame.NotEnoughFrames:
|
|
|
|
app.ctx.mask = None
|
|
|
|
motion_detected = False
|
|
|
|
else:
|
|
|
|
# Implement dumb Kalman filter
|
|
|
|
active_blocks = np.count_nonzero(app.ctx.mask)
|
|
|
|
differing_blocks.append(active_blocks)
|
|
|
|
differing_blocks[:] = differing_blocks[-10:]
|
|
|
|
total_blocks = app.ctx.mask.shape[0] * app.ctx.mask.shape[1]
|
|
|
|
threshold_blocks = THRESHOLD_RATIO * total_blocks / 100
|
|
|
|
average_blocks = sum(differing_blocks) / len(differing_blocks)
|
2022-07-10 10:15:54 +00:00
|
|
|
hist_active_blocks_ratio.labels("main").observe(active_blocks / total_blocks)
|
2022-02-25 21:00:05 +00:00
|
|
|
motion_detected = average_blocks > threshold_blocks
|
|
|
|
|
2022-07-10 10:15:54 +00:00
|
|
|
now = datetime.utcnow()
|
|
|
|
gauge_last_frame.labels("processed").set(now.timestamp())
|
|
|
|
hist_processing_latency.observe((now - dt).total_seconds())
|
2022-02-25 21:00:05 +00:00
|
|
|
|
|
|
|
# Propagate SIGUSR1 signal handler
|
|
|
|
if app.ctx.manual_trigger:
|
2022-07-10 10:15:54 +00:00
|
|
|
logger.info("Manually triggering event via SIGUSR1")
|
2022-02-25 21:00:05 +00:00
|
|
|
motion_detected = True
|
|
|
|
app.ctx.manual_trigger = False
|
|
|
|
|
|
|
|
# Handle event start
|
|
|
|
if motion_detected and not event_id:
|
|
|
|
result = await app.ctx.coll.insert_one({
|
|
|
|
"timestamp": dt,
|
|
|
|
"event": "motion-detected",
|
|
|
|
"started": dt,
|
|
|
|
"finished": dt + timedelta(minutes=2),
|
|
|
|
"component": "camdetect",
|
|
|
|
"source": SOURCE_NAME,
|
|
|
|
"screenshots": [],
|
|
|
|
"action": "event",
|
|
|
|
})
|
|
|
|
app.ctx.event_id = event_id = result.inserted_id
|
|
|
|
|
2022-03-06 06:25:54 +00:00
|
|
|
# Handle buffering frames prior event start
|
|
|
|
if hold_queue.full():
|
|
|
|
await hold_queue.get()
|
|
|
|
hold_queue.put_nowait((blob, thumb))
|
2022-07-10 10:15:54 +00:00
|
|
|
gauge_queue_frames.labels("hold").set(hold_queue.qsize())
|
2022-03-06 06:25:54 +00:00
|
|
|
|
2022-02-25 21:00:05 +00:00
|
|
|
# Handle image upload
|
|
|
|
if motion_detected and event_id:
|
2022-07-10 10:15:54 +00:00
|
|
|
counter_frames.labels("motion").inc()
|
2022-03-06 06:25:54 +00:00
|
|
|
while True:
|
|
|
|
if not uploads_skipped:
|
|
|
|
uploads_skipped = UPLOAD_FRAMESKIP
|
|
|
|
else:
|
|
|
|
uploads_skipped -= 1
|
|
|
|
continue
|
|
|
|
|
|
|
|
# Drain queue of frames prior event start
|
|
|
|
try:
|
|
|
|
blob, thumb = hold_queue.get_nowait()
|
|
|
|
except asyncio.QueueEmpty:
|
|
|
|
break
|
|
|
|
|
|
|
|
try:
|
|
|
|
# Push JPEG blob into upload queue
|
2022-07-10 10:15:54 +00:00
|
|
|
upload_queue.put_nowait((dt, blob, thumb, event_id))
|
2022-03-06 06:25:54 +00:00
|
|
|
except asyncio.QueueFull:
|
2022-07-10 10:15:54 +00:00
|
|
|
counter_dropped_frames.labels("upload").inc()
|
|
|
|
gauge_queue_frames.labels("upload").set(upload_queue.qsize())
|
2022-02-25 21:00:05 +00:00
|
|
|
|
|
|
|
# Handle event end
|
|
|
|
if not motion_detected and event_id:
|
|
|
|
app.ctx.coll.update_one({
|
|
|
|
"_id": event_id
|
|
|
|
}, {
|
|
|
|
"$set": {
|
|
|
|
"finished": dt,
|
|
|
|
}
|
|
|
|
})
|
|
|
|
app.ctx.event_id = event_id = None
|
|
|
|
|
|
|
|
|
2022-02-27 11:12:22 +00:00
|
|
|
def generate_thumbnail(dct):
|
|
|
|
"""
|
|
|
|
This is highly efficient and highly inaccurate function to generate
|
|
|
|
thumbnail based purely on JPEG coefficients
|
|
|
|
"""
|
|
|
|
y, cr, cb = dct
|
|
|
|
|
|
|
|
# Determine aspect ratio and minimum dimension for cropping
|
|
|
|
ar = y.shape[0] < y.shape[1]
|
|
|
|
dm = (y.shape[0] if ar else y.shape[1]) & 0xfffffff8
|
|
|
|
|
|
|
|
# Determine cropping slices to make it square
|
|
|
|
jl = ((y.shape[1] >> 1) - (dm >> 1) if ar else 0)
|
|
|
|
jt = (0 if ar else (y.shape[0] >> 1) - (dm >> 1))
|
|
|
|
jr = jl + dm
|
|
|
|
jb = jt + dm
|
|
|
|
|
|
|
|
# Do the actual crop
|
|
|
|
ty = y[jt:jb, jl:jr, 0]
|
|
|
|
tb = cb[jt >> 1:jb >> 1, jl >> 1:jr >> 1, 0]
|
|
|
|
tr = cr[jt >> 1:jb >> 1, jl >> 1:jr >> 1, 0]
|
|
|
|
|
|
|
|
# Upsample chroma, dummy convert first coeff and stack all channels
|
|
|
|
m = np.dstack((
|
|
|
|
np.array((ty >> 3) + 127, dtype=np.uint8),
|
|
|
|
np.array(
|
|
|
|
(tb.repeat(2, 1).repeat(2, 0) >> 3) + 127, dtype=np.uint8)[:dm],
|
|
|
|
np.array(
|
|
|
|
(tr.repeat(2, 1).repeat(2, 0) >> 3) + 127, dtype=np.uint8)[:dm]))
|
|
|
|
_, jpeg = cv2.imencode(".jpg",
|
2022-03-06 06:25:54 +00:00
|
|
|
cv2.cvtColor(m, cv2.COLOR_YCrCb2BGR),
|
2022-02-27 11:12:22 +00:00
|
|
|
(cv2.IMWRITE_JPEG_QUALITY, 80))
|
|
|
|
return jpeg
|
|
|
|
|
|
|
|
|
2022-02-25 21:00:05 +00:00
|
|
|
async def download(resp, queue):
|
|
|
|
"""
|
|
|
|
This coroutine iterates over HTTP connection chunks
|
|
|
|
assembling the original JPEG blobs and decodes the
|
|
|
|
DCT coefficients of the frames
|
|
|
|
"""
|
2022-02-12 18:44:20 +00:00
|
|
|
buf = b""
|
2022-07-10 10:15:54 +00:00
|
|
|
logger.info("Upstream connection opened with status: %d", resp.status)
|
2022-02-12 18:44:20 +00:00
|
|
|
async for data, end_of_http_chunk in resp.content.iter_chunks():
|
2022-07-10 10:15:54 +00:00
|
|
|
counter_receive_bytes.inc(len(data))
|
2022-02-12 18:44:20 +00:00
|
|
|
if end_of_http_chunk:
|
2022-07-10 10:15:54 +00:00
|
|
|
counter_receive_chunks.inc()
|
2022-02-12 18:44:20 +00:00
|
|
|
if buf:
|
|
|
|
# seek end
|
2022-02-16 20:32:56 +00:00
|
|
|
marker = data.find(b"\xff\xd9")
|
2022-02-12 18:44:20 +00:00
|
|
|
if marker < 0:
|
|
|
|
buf += data
|
|
|
|
continue
|
|
|
|
else:
|
2022-02-25 21:00:05 +00:00
|
|
|
# Assemble JPEG blob
|
|
|
|
blob = buf + data[:marker+2]
|
|
|
|
|
2022-02-27 11:12:22 +00:00
|
|
|
# Parse DCT coefficients
|
|
|
|
dct = loads(blob)
|
2022-02-25 21:00:05 +00:00
|
|
|
|
2022-07-10 10:15:54 +00:00
|
|
|
now = datetime.utcnow()
|
|
|
|
gauge_last_frame.labels("download").set(now.timestamp())
|
2022-02-25 21:00:05 +00:00
|
|
|
try:
|
|
|
|
# Convert Y component to 16 bit for easier handling
|
|
|
|
queue.put_nowait((
|
2022-07-10 10:15:54 +00:00
|
|
|
now,
|
2022-02-25 21:00:05 +00:00
|
|
|
blob,
|
2022-02-27 11:12:22 +00:00
|
|
|
dct,
|
|
|
|
generate_thumbnail(dct)))
|
2022-02-25 21:00:05 +00:00
|
|
|
except asyncio.QueueFull:
|
2022-07-10 10:15:54 +00:00
|
|
|
counter_dropped_frames.labels("download").inc()
|
|
|
|
gauge_queue_frames.labels("download").set(queue.qsize())
|
2022-02-12 18:44:20 +00:00
|
|
|
data = data[marker+2:]
|
|
|
|
buf = b""
|
2022-07-10 10:15:54 +00:00
|
|
|
counter_receive_frames.inc()
|
2022-02-12 18:44:20 +00:00
|
|
|
|
|
|
|
# seek begin
|
2022-02-16 20:32:56 +00:00
|
|
|
marker = data.find(b"\xff\xd8")
|
2022-02-12 18:44:20 +00:00
|
|
|
if marker >= 0:
|
|
|
|
buf = data[marker:]
|
|
|
|
else:
|
2022-07-10 10:15:54 +00:00
|
|
|
counter_discarded_bytes.inc(len(data))
|
2022-02-12 18:44:20 +00:00
|
|
|
|
|
|
|
|
2022-02-25 21:00:05 +00:00
|
|
|
async def downloader(queue: asyncio.Queue):
|
|
|
|
"""
|
|
|
|
Downloader task connects to MJPEG source and
|
2022-07-10 10:15:54 +00:00
|
|
|
pushes the JPEG frames to download queue
|
2022-02-25 21:00:05 +00:00
|
|
|
"""
|
2022-02-13 17:53:47 +00:00
|
|
|
while True:
|
2022-02-16 20:32:56 +00:00
|
|
|
to = aiohttp.ClientTimeout(connect=5, sock_read=2)
|
|
|
|
async with aiohttp.ClientSession(timeout=to) as session:
|
2022-07-10 10:15:54 +00:00
|
|
|
logger.info("Opening connection to %s", url)
|
2022-02-12 18:44:20 +00:00
|
|
|
try:
|
2022-02-13 17:53:47 +00:00
|
|
|
async with session.get(url) as resp:
|
2022-02-25 21:00:05 +00:00
|
|
|
await download(resp, queue)
|
2022-02-13 20:02:51 +00:00
|
|
|
except (aiohttp.ClientError, asyncio.exceptions.TimeoutError) as e:
|
|
|
|
j = "%s.%s" % (e.__class__.__module__, e.__class__.__name__)
|
2022-07-10 10:15:54 +00:00
|
|
|
logger.info("Caught exception %s", j)
|
|
|
|
counter_errors.labels("download", j).inc()
|
2022-02-13 20:02:51 +00:00
|
|
|
await asyncio.sleep(1)
|
2022-02-12 18:44:20 +00:00
|
|
|
|
2022-02-25 21:00:05 +00:00
|
|
|
app = Sanic("camdetect")
|
2022-07-11 10:28:22 +00:00
|
|
|
setup_json_logging(app)
|
2022-02-12 18:44:20 +00:00
|
|
|
|
|
|
|
|
|
|
|
@app.route("/bypass")
|
|
|
|
async def bypass_stream_wrapper(request):
|
2022-02-27 11:35:03 +00:00
|
|
|
# Desired frame interval, by default 500ms
|
|
|
|
interval = float(request.args.get("interval", 500)) / 1000.0
|
2022-03-06 06:25:54 +00:00
|
|
|
|
2022-02-12 18:44:20 +00:00
|
|
|
async def stream_camera(response):
|
2022-02-27 11:35:03 +00:00
|
|
|
ts = 0
|
2022-02-12 18:44:20 +00:00
|
|
|
while True:
|
2022-02-27 11:35:03 +00:00
|
|
|
while True:
|
|
|
|
await app.ctx.event_frame.wait()
|
|
|
|
if time() > ts + interval:
|
|
|
|
break
|
|
|
|
ts = time()
|
2022-02-25 21:00:05 +00:00
|
|
|
data = CHUNK_BOUNDARY + app.ctx.last_frame
|
2022-02-12 18:44:20 +00:00
|
|
|
await response.write(data)
|
2022-07-10 10:15:54 +00:00
|
|
|
counter_transmit_bytes.inc(len(data))
|
|
|
|
counter_transmit_frames.inc()
|
2022-02-12 18:44:20 +00:00
|
|
|
return response.stream(
|
|
|
|
stream_camera,
|
2022-02-25 21:00:05 +00:00
|
|
|
content_type="multipart/x-mixed-replace; boundary=frame")
|
2022-02-12 18:44:20 +00:00
|
|
|
|
2022-02-16 20:32:56 +00:00
|
|
|
|
2022-02-12 18:44:20 +00:00
|
|
|
@app.route("/debug")
|
|
|
|
async def stream_wrapper(request):
|
|
|
|
async def stream_camera(response):
|
|
|
|
while True:
|
|
|
|
await app.ctx.event_frame.wait()
|
2022-02-25 21:00:05 +00:00
|
|
|
|
|
|
|
# Parse JPEG blob
|
|
|
|
arr = np.frombuffer(app.ctx.last_frame, dtype=np.uint8)
|
2022-02-16 20:32:56 +00:00
|
|
|
img = cv2.imdecode(arr, cv2.IMREAD_UNCHANGED)
|
2022-02-25 21:00:05 +00:00
|
|
|
|
|
|
|
# Highlight green or red channel depending on whether
|
|
|
|
# motion event is in progress or not
|
|
|
|
channel = 2 if app.ctx.event_id else 1
|
|
|
|
if app.ctx.mask is not None:
|
|
|
|
for y in range(0, app.ctx.mask.shape[0]):
|
|
|
|
for x in range(0, app.ctx.mask.shape[1]):
|
|
|
|
if app.ctx.mask[y][x] > 0:
|
2022-02-16 20:32:56 +00:00
|
|
|
img[y*DCT_BLOCK_SIZE:(y+1)*DCT_BLOCK_SIZE,
|
2022-02-25 21:00:05 +00:00
|
|
|
x*DCT_BLOCK_SIZE:(x+1)*DCT_BLOCK_SIZE,
|
|
|
|
channel] = 255
|
2022-02-12 18:44:20 +00:00
|
|
|
|
2022-02-25 21:00:05 +00:00
|
|
|
# Compress modified frame as JPEG frame
|
2022-02-12 18:44:20 +00:00
|
|
|
_, jpeg = cv2.imencode(".jpg", img, (cv2.IMWRITE_JPEG_QUALITY, 80))
|
2022-02-16 20:32:56 +00:00
|
|
|
data = CHUNK_BOUNDARY + jpeg.tobytes()
|
2022-02-12 18:44:20 +00:00
|
|
|
await response.write(data)
|
2022-07-10 10:15:54 +00:00
|
|
|
counter_transmit_bytes.inc(len(data))
|
|
|
|
counter_transmit_frames.inc()
|
2022-02-12 18:44:20 +00:00
|
|
|
|
2022-02-25 21:00:05 +00:00
|
|
|
# Transmit as chunked MJPEG stream
|
2022-02-12 18:44:20 +00:00
|
|
|
return response.stream(
|
|
|
|
stream_camera,
|
2022-02-16 20:32:56 +00:00
|
|
|
content_type="multipart/x-mixed-replace; boundary=frame"
|
2022-02-12 18:44:20 +00:00
|
|
|
)
|
|
|
|
|
|
|
|
|
2022-02-13 11:17:29 +00:00
|
|
|
@app.route("/readyz")
|
|
|
|
async def ready_check(request):
|
2022-02-27 15:02:55 +00:00
|
|
|
try:
|
|
|
|
async for i in app.ctx.coll.find().limit(1):
|
|
|
|
break
|
|
|
|
except pymongo.errors.ServerSelectionTimeoutError:
|
|
|
|
return response.text("MongoDB server selection timeout", status=503)
|
|
|
|
if app.ctx.mask is None:
|
|
|
|
return response.text("Not enough frames", status=503)
|
|
|
|
return response.text("OK")
|
2022-02-13 11:17:29 +00:00
|
|
|
|
|
|
|
|
2022-02-16 20:32:56 +00:00
|
|
|
@app.route("/event")
|
2022-02-12 18:44:20 +00:00
|
|
|
async def wrapper_stream_event(request):
|
|
|
|
async def stream_event(response):
|
|
|
|
while True:
|
|
|
|
await app.ctx.event_frame.wait()
|
2022-02-25 21:00:05 +00:00
|
|
|
if app.ctx.mask is not None:
|
2022-02-12 18:44:20 +00:00
|
|
|
continue
|
2022-02-25 21:00:05 +00:00
|
|
|
s = "data: " + json.dumps(app.ctx.mask.tolist()) + "\r\n\r\n"
|
2022-02-12 18:44:20 +00:00
|
|
|
await response.write(s.encode())
|
2022-07-10 10:15:54 +00:00
|
|
|
counter_emitted_events.inc()
|
2022-02-16 20:32:56 +00:00
|
|
|
return stream(stream_event, content_type="text/event-stream")
|
2022-02-12 18:44:20 +00:00
|
|
|
|
|
|
|
|
2022-02-25 21:00:05 +00:00
|
|
|
def handler(signum, frame):
|
|
|
|
# SIGUSR1 handler for manually triggering an event
|
|
|
|
app.ctx.manual_trigger = True
|
|
|
|
|
|
|
|
|
2022-02-16 20:32:56 +00:00
|
|
|
@app.listener("before_server_start")
|
2022-02-12 18:44:20 +00:00
|
|
|
async def setup_db(app, loop):
|
2022-02-25 21:00:05 +00:00
|
|
|
app.ctx.db = AsyncIOMotorClient(MONGO_URI).get_default_database()
|
|
|
|
app.ctx.coll = app.ctx.db[MONGO_COLLECTION]
|
2022-02-12 18:44:20 +00:00
|
|
|
app.ctx.last_frame = None
|
|
|
|
app.ctx.event_frame = asyncio.Event()
|
2022-02-25 21:00:05 +00:00
|
|
|
app.ctx.event_id = None
|
|
|
|
app.ctx.manual_trigger = False
|
|
|
|
signal.signal(signal.SIGUSR1, handler)
|
|
|
|
|
|
|
|
# Set up processing pipeline
|
|
|
|
download_queue = asyncio.Queue()
|
|
|
|
upload_queue = asyncio.Queue()
|
|
|
|
asyncio.create_task(uploader(
|
|
|
|
upload_queue))
|
|
|
|
asyncio.create_task(downloader(
|
|
|
|
download_queue))
|
|
|
|
asyncio.create_task(motion_detector(
|
|
|
|
ReferenceFrame(),
|
|
|
|
download_queue,
|
|
|
|
upload_queue))
|
|
|
|
|
2022-02-12 18:44:20 +00:00
|
|
|
|
|
|
|
monitor(app).expose_endpoint()
|
|
|
|
|
|
|
|
try:
|
2022-02-27 12:16:33 +00:00
|
|
|
app.run(host="0.0.0.0",
|
|
|
|
port=5000,
|
|
|
|
debug=bool(os.getenv("DEBUG", 0)))
|
2022-02-12 18:44:20 +00:00
|
|
|
except KeyboardInterrupt:
|
|
|
|
asyncio.get_event_loop().close()
|