Refactor
All checks were successful
continuous-integration/drone Build is passing

* Implement multi queue pipelining
* Implement screenshot upload to S3
* Implement event insertion to Mongo
* Add SIGUSR1 handler to manually trigger screenshots
This commit is contained in:
Lauri Võsandi 2022-02-25 23:00:05 +02:00 committed by Lauri Võsandi
parent b903fca13d
commit a1699fa380
4 changed files with 296 additions and 92 deletions

View File

@ -15,7 +15,7 @@ RUN apt-get update && apt-get install -y \
python3-flask \
python3-pip \
&& apt-get clean
RUN pip3 install boto3 prometheus_client pymongo==3.12.2 aiohttp jpeg2dct sanic==21.6.2 sanic_prometheus motor
RUN pip3 install aioboto3 prometheus_client pymongo==3.12.2 aiohttp jpeg2dct sanic==21.6.2 sanic_prometheus motor
COPY camdetect.py /app
ENTRYPOINT /app/camdetect.py
EXPOSE 5000

View File

@ -13,3 +13,16 @@ In a nutshell:
- Exposes endpoint for distributing MJPEG stream inside the cluster,
eg by the `camera-tiler`
- Exposes endpoint for inspecting DCT blocks where motion has been detected
# Developing
Bundled `docker-compose.yml` brings up:
* [Minio](http://localhost:9001/buckets/camdetect/browse)
* [Mongoexpress](http://localhost:8081/db/default/eventlog)
To manually trigger event:
```
docker kill -sUSR1 camera-motion-detect_camdetect_1
```

View File

@ -1,30 +1,39 @@
#!/usr/bin/env python3
import aioboto3
import aiohttp
import asyncio
import cv2
import hashlib
import io
import json
import numpy as np
import os
import json
import signal
import socket
import sys
from datetime import datetime
from datetime import datetime, timedelta
from jpeg2dct.numpy import loads
from motor.motor_asyncio import AsyncIOMotorClient
from prometheus_client import Counter, Gauge
from sanic import Sanic, response
from sanic.response import stream
from sanic_prometheus import monitor
from time import time
_, url = sys.argv
AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID", "camdetect")
AWS_SECRET_ACCESS_KEY = os.environ["AWS_SECRET_ACCESS_KEY"]
S3_ENDPOINT_URL = os.environ["S3_ENDPOINT_URL"]
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME", "camdetect")
MONGO_URI = os.getenv("MONGO_URI", "mongodb://127.0.0.1:27017/default")
FQDN = socket.getfqdn()
MONGO_COLLECTION = os.getenv("MONGO_COLLETION", "eventlog")
SOURCE_NAME = os.environ["SOURCE_NAME"]
SLIDE_WINDOW = 2
DCT_BLOCK_SIZE = 8
# How many blocks have changes to consider movement in frame
THRESHOLD_BLOCKS = 20
THRESHOLD_MOTION_START = 2
# Percentage of blocks active to consider movement in whole frame
THRESHOLD_RATIO = int(os.getenv("THRESHOLD_RATIO", "5"))
CHUNK_BOUNDARY = b"\n--frame\nContent-Type: image/jpeg\n\n"
counter_dropped_bytes = Counter(
@ -55,32 +64,218 @@ counter_errors = Counter(
counter_movement_frames = Counter(
"camdetect_movement_frames",
"Frames with movement detected in them")
counter_uploaded_frames = Counter(
"camdetect_uploaded_frames",
"Frames uploaded via S3")
counter_upload_errors = Counter(
"camdetect_upload_errors",
"Frames upload errors related to S3")
counter_upload_dropped_frames = Counter(
"camdetect_upload_dropped_frames",
"Frames that were dropped due to S3 upload queue being full")
counter_download_dropped_frames = Counter(
"camdetect_download_dropped_frames",
"Frames that were downloaded from camera, but not processed")
gauge_last_frame = Gauge(
"camdetect_last_frame",
"Timestamp of last frame")
gauge_frame_motion_detected = Gauge(
"camdetect_frame_motion_detected",
"Motion detected in frame")
gauge_event_active = Gauge(
"camdetect_event_active",
"Motion event in progress")
gauge_total_blocks = Gauge(
"camdetect_total_blocks",
"Total DCT blocks")
gauge_active_blocks = Gauge(
"camdetect_active_blocks",
"Total active, threshold exceeding DCT blocks")
gauge_upload_queue_size = Gauge(
"camdetect_upload_queue_size",
"Number of frames awaiting to be uploaded via S3")
gauge_download_queue_size = Gauge(
"camdetect_download_queue_size",
"Number of frames awaiting to be processed by motion detection loop")
# Reset some gauges
gauge_frame_motion_detected.set(0)
gauge_upload_queue_size.set(0)
gauge_download_queue_size.set(0)
assert SLIDE_WINDOW <= 8 # This is 256 frames which should be enough
class Frame(object):
def __init__(self, blob):
self.blob = blob
self.y, self.cb, self.cr = loads(blob)
self.mask = np.int16(self.y[:, :, 0])
async def upload(bucket, blob: bytes, event_id):
"""
Upload single JPEG blob to S3 bucket
"""
# Generate S3 path based on the JPEG blob SHA512 digest
fp = hashlib.sha512(blob).hexdigest()
path = "%s/%s/%s/%s.jpg" % (fp[:4], fp[4:8], fp[8:12], fp[12:])
await bucket.upload_fileobj(io.BytesIO(blob), path)
# Add screenshot path to the event
app.ctx.coll.update_one({
"_id": event_id
}, {
"$addToSet": {
"screenshots": path,
}
})
# TODO: Handle 16MB maximum document size
async def client_connect(resp):
async def uploader(queue):
"""
Uploader task grabs JPEG blobs from upload queue and uploads them to S3
"""
session = aioboto3.Session(
aws_access_key_id=AWS_ACCESS_KEY_ID,
aws_secret_access_key=AWS_SECRET_ACCESS_KEY)
async with session.resource("s3", endpoint_url=S3_ENDPOINT_URL) as s3:
bucket = await s3.Bucket(S3_BUCKET_NAME)
while True:
blob, event_id = await queue.get()
await upload(bucket, blob, event_id)
counter_uploaded_frames.inc()
gauge_upload_queue_size.set(queue.qsize())
class ReferenceFrame():
"""
ReferenceFrame keeps last 2 ^ size frames to infer the background scene
compared to which motion is detected
This is pretty much what background subtractor does in OpenCV,
only difference is that we want have better performance instead of
accuracy
"""
class NotEnoughFrames(Exception):
pass
def __init__(self, size=SLIDE_WINDOW):
self.y = []
self.cumulative = None
self.size = size
def put(self, y):
if self.cumulative is None:
self.cumulative = np.copy(y)
else:
self.cumulative += y
self.y.append(y)
if len(self.y) > 2 ** self.size:
self.cumulative -= self.y[0]
self.y = self.y[1:]
def get(self):
if len(self.y) == 2 ** self.size:
return self.cumulative >> SLIDE_WINDOW
else:
raise self.NotEnoughFrames()
async def motion_detector(reference_frame, download_queue, upload_queue):
"""
Motion detector grabs JPEG blobs and Y channel coefficients
from download queue, performs motion detection and pushes relevant
JPEG blobs to upload queue going to S3
"""
event_id = None
differing_blocks = []
while True:
dt, blob, y = await download_queue.get()
app.ctx.last_frame = blob
# Signal /bypass and /debug handlers about new frame
app.ctx.event_frame.set()
app.ctx.event_frame.clear()
# Update metrics
gauge_total_blocks.set(y.shape[0] * y.shape[1])
gauge_last_frame.set(dt.timestamp())
reference_frame.put(y)
try:
app.ctx.mask = cv2.inRange(cv2.absdiff(y,
reference_frame.get()), 25, 65535)
except ReferenceFrame.NotEnoughFrames:
app.ctx.mask = None
motion_detected = False
else:
# Implement dumb Kalman filter
active_blocks = np.count_nonzero(app.ctx.mask)
differing_blocks.append(active_blocks)
differing_blocks[:] = differing_blocks[-10:]
total_blocks = app.ctx.mask.shape[0] * app.ctx.mask.shape[1]
threshold_blocks = THRESHOLD_RATIO * total_blocks / 100
average_blocks = sum(differing_blocks) / len(differing_blocks)
motion_detected = average_blocks > threshold_blocks
# Update metrics
gauge_active_blocks.set(active_blocks)
gauge_total_blocks.set(total_blocks)
# Propagate SIGUSR1 signal handler
if app.ctx.manual_trigger:
print("Manually triggering event via SIGUSR1")
motion_detected = True
app.ctx.manual_trigger = False
# Handle event start
if motion_detected and not event_id:
result = await app.ctx.coll.insert_one({
"timestamp": dt,
"event": "motion-detected",
"started": dt,
"finished": dt + timedelta(minutes=2),
"component": "camdetect",
"source": SOURCE_NAME,
"screenshots": [],
"action": "event",
})
app.ctx.event_id = event_id = result.inserted_id
gauge_event_active.set(1)
# Handle image upload
if motion_detected and event_id:
counter_movement_frames.inc()
try:
# Push JPEG blob into upload queue
upload_queue.put_nowait((blob, event_id))
except asyncio.QueueFull:
counter_upload_dropped_frames.inc()
gauge_upload_queue_size.set(upload_queue.qsize())
# Handle event end
if not motion_detected and event_id:
app.ctx.coll.update_one({
"_id": event_id
}, {
"$set": {
"finished": dt,
}
})
app.ctx.event_id = event_id = None
gauge_event_active.set(0)
async def download(resp, queue):
"""
This coroutine iterates over HTTP connection chunks
assembling the original JPEG blobs and decodes the
DCT coefficients of the frames
"""
buf = b""
print("Upstream connection opened with status:", resp.status)
async for data, end_of_http_chunk in resp.content.iter_chunks():
counter_rx_bytes.inc(len(data))
if end_of_http_chunk:
counter_rx_chunks.inc()
if buf:
# seek end
marker = data.find(b"\xff\xd9")
@ -88,55 +283,20 @@ async def client_connect(resp):
buf += data
continue
else:
app.ctx.last_frame = Frame(buf + data[:marker+2])
gauge_last_frame.set(time())
# Assemble JPEG blob
blob = buf + data[:marker+2]
reference = app.ctx.last_frame.mask
app.ctx.frames.append(reference)
if app.ctx.avg is None:
app.ctx.avg = np.copy(reference)
else:
app.ctx.avg += reference
if len(app.ctx.frames) > 2 ** SLIDE_WINDOW:
app.ctx.avg -= app.ctx.frames[0]
app.ctx.frames = app.ctx.frames[1:]
if len(app.ctx.frames) == 2 ** SLIDE_WINDOW:
app.ctx.thresh = cv2.inRange(cv2.absdiff(
app.ctx.last_frame.mask,
app.ctx.avg >> SLIDE_WINDOW), 25, 65535)
else:
app.ctx.thresh = None
gauge_total_blocks.set(app.ctx.last_frame.mask.shape[0] *
app.ctx.last_frame.mask.shape[1])
movement_detected = False
if app.ctx.thresh is not None:
differing_blocks = np.count_nonzero(app.ctx.thresh)
gauge_active_blocks.set(differing_blocks)
if differing_blocks > THRESHOLD_BLOCKS:
counter_movement_frames.inc()
movement_detected = True
if movement_detected:
if app.ctx.motion_frames < 30:
app.ctx.motion_frames += 1
else:
if app.ctx.motion_frames > 0:
app.ctx.motion_frames -= 1
if app.ctx.motion_frames > 20:
if not app.ctx.motion_start:
app.ctx.motion_start = datetime.utcnow()
print("Movement start")
elif app.ctx.motion_frames < 5:
app.ctx.motion_start = None
print("Movement end")
app.ctx.event_frame.set()
app.ctx.event_frame.clear()
# Parse DCT coeffs and keep DCT coeffs only for Y channel
y, _, _ = loads(blob)
try:
# Convert Y component to 16 bit for easier handling
queue.put_nowait((
datetime.utcnow(),
blob,
np.int16(y[:, :, 0])))
except asyncio.QueueFull:
counter_download_dropped_frames.inc()
data = data[marker+2:]
buf = b""
counter_rx_frames.inc()
@ -149,23 +309,25 @@ async def client_connect(resp):
counter_dropped_bytes.inc(len(data))
async def client():
async def downloader(queue: asyncio.Queue):
"""
Downloader task connects to MJPEG source and
pushes the JPEG frames to a queue
"""
while True:
to = aiohttp.ClientTimeout(connect=5, sock_read=2)
async with aiohttp.ClientSession(timeout=to) as session:
print("Opening upstream connection to %s" % url)
try:
async with session.get(url) as resp:
await client_connect(resp)
await download(resp, queue)
except (aiohttp.ClientError, asyncio.exceptions.TimeoutError) as e:
j = "%s.%s" % (e.__class__.__module__, e.__class__.__name__)
print("Caught exception %s" % j)
counter_errors.labels(exception=j).inc()
await asyncio.sleep(1)
app = Sanic("lease")
app.config["WTF_CSRF_ENABLED"] = False
app = Sanic("camdetect")
@app.route("/bypass")
@ -173,15 +335,13 @@ async def bypass_stream_wrapper(request):
async def stream_camera(response):
while True:
await app.ctx.event_frame.wait()
data = CHUNK_BOUNDARY + app.ctx.last_frame.blob
data = CHUNK_BOUNDARY + app.ctx.last_frame
await response.write(data)
counter_tx_bytes.inc(len(data))
counter_tx_frames.inc()
return response.stream(
stream_camera,
content_type="multipart/x-mixed-replace; boundary=frame"
)
content_type="multipart/x-mixed-replace; boundary=frame")
@app.route("/debug")
@ -189,21 +349,30 @@ async def stream_wrapper(request):
async def stream_camera(response):
while True:
await app.ctx.event_frame.wait()
arr = np.frombuffer(app.ctx.last_frame.blob, dtype=np.uint8)
img = cv2.imdecode(arr, cv2.IMREAD_UNCHANGED)
if len(app.ctx.frames) == 2 ** SLIDE_WINDOW:
for y in range(0, len(app.ctx.last_frame.mask)):
for x in range(0, len(app.ctx.last_frame.mask[0])):
if app.ctx.thresh[y][x] > 0:
img[y*DCT_BLOCK_SIZE:(y+1)*DCT_BLOCK_SIZE,
x*DCT_BLOCK_SIZE:(x+1)*DCT_BLOCK_SIZE, 2] = 255
# Parse JPEG blob
arr = np.frombuffer(app.ctx.last_frame, dtype=np.uint8)
img = cv2.imdecode(arr, cv2.IMREAD_UNCHANGED)
# Highlight green or red channel depending on whether
# motion event is in progress or not
channel = 2 if app.ctx.event_id else 1
if app.ctx.mask is not None:
for y in range(0, app.ctx.mask.shape[0]):
for x in range(0, app.ctx.mask.shape[1]):
if app.ctx.mask[y][x] > 0:
img[y*DCT_BLOCK_SIZE:(y+1)*DCT_BLOCK_SIZE,
x*DCT_BLOCK_SIZE:(x+1)*DCT_BLOCK_SIZE,
channel] = 255
# Compress modified frame as JPEG frame
_, jpeg = cv2.imencode(".jpg", img, (cv2.IMWRITE_JPEG_QUALITY, 80))
data = CHUNK_BOUNDARY + jpeg.tobytes()
await response.write(data)
counter_tx_bytes.inc(len(data))
counter_tx_frames.inc()
# Transmit as chunked MJPEG stream
return response.stream(
stream_camera,
content_type="multipart/x-mixed-replace; boundary=frame"
@ -212,7 +381,7 @@ async def stream_wrapper(request):
@app.route("/readyz")
async def ready_check(request):
if len(app.ctx.frames) == 2 ** SLIDE_WINDOW:
if app.ctx.mask is not None:
return response.text("OK")
return response.text("Not enough frames", status=503)
@ -222,24 +391,41 @@ async def wrapper_stream_event(request):
async def stream_event(response):
while True:
await app.ctx.event_frame.wait()
if len(app.ctx.frames) < 2 ** SLIDE_WINDOW:
if app.ctx.mask is not None:
continue
s = "data: " + json.dumps(app.ctx.thresh.tolist()) + "\r\n\r\n"
s = "data: " + json.dumps(app.ctx.mask.tolist()) + "\r\n\r\n"
await response.write(s.encode())
counter_tx_events.inc()
return stream(stream_event, content_type="text/event-stream")
def handler(signum, frame):
# SIGUSR1 handler for manually triggering an event
app.ctx.manual_trigger = True
@app.listener("before_server_start")
async def setup_db(app, loop):
app.ctx.db = AsyncIOMotorClient(MONGO_URI).get_default_database()
app.ctx.coll = app.ctx.db[MONGO_COLLECTION]
app.ctx.last_frame = None
app.ctx.event_frame = asyncio.Event()
app.ctx.frames = []
app.ctx.avg = None
app.ctx.motion_frames = 0
app.ctx.motion_start = None
app.ctx.motion_end = None
asyncio.create_task(client())
app.ctx.event_id = None
app.ctx.manual_trigger = False
signal.signal(signal.SIGUSR1, handler)
# Set up processing pipeline
download_queue = asyncio.Queue()
upload_queue = asyncio.Queue()
asyncio.create_task(uploader(
upload_queue))
asyncio.create_task(downloader(
download_queue))
asyncio.create_task(motion_detector(
ReferenceFrame(),
download_queue,
upload_queue))
monitor(app).expose_endpoint()

View File

@ -1,7 +1,6 @@
version: '3.7'
# All keys here are for dev instance only, do not put prod keys here
# To override and use inventory from prod use .env file
services:
camdetect:
@ -13,7 +12,9 @@ services:
command: http://user:123456@127.0.0.1:8080?action=stream
environment:
- MJPEGSTREAMER_CREDENTIALS=user:123456
env_file: .env
- AWS_SECRET_ACCESS_KEY=2mSI6HdbJ8
- S3_ENDPOINT_URL=http://127.0.0.1:9000
- SOURCE_NAME=dummy
mongoexpress:
restart: always
@ -42,16 +43,20 @@ services:
- --config.file=/config/prometheus.yml
volumes:
- ./config:/config:ro
logging:
driver: none
minio:
restart: always
network_mode: host
image: bitnami/minio:latest
environment:
- MINIO_ACCESS_KEY=kspace-mugshot
- MINIO_ACCESS_KEY=camdetect
- MINIO_SECRET_KEY=2mSI6HdbJ8
- MINIO_DEFAULT_BUCKETS=kspace-mugshot:download
- MINIO_DEFAULT_BUCKETS=camdetect
- MINIO_CONSOLE_PORT_NUMBER=9001
logging:
driver: none
mjpg-streamer:
network_mode: host