* Implement multi queue pipelining * Implement screenshot upload to S3 * Implement event insertion to Mongo * Add SIGUSR1 handler to manually trigger screenshots
This commit is contained in:
		| @@ -15,7 +15,7 @@ RUN apt-get update && apt-get install -y \ | ||||
|     python3-flask \ | ||||
|     python3-pip \ | ||||
|  && apt-get clean | ||||
| RUN pip3 install boto3 prometheus_client pymongo==3.12.2 aiohttp jpeg2dct sanic==21.6.2 sanic_prometheus motor | ||||
| RUN pip3 install aioboto3 prometheus_client pymongo==3.12.2 aiohttp jpeg2dct sanic==21.6.2 sanic_prometheus motor | ||||
| COPY camdetect.py /app | ||||
| ENTRYPOINT /app/camdetect.py | ||||
| EXPOSE 5000 | ||||
|   | ||||
							
								
								
									
										13
									
								
								README.md
									
									
									
									
									
								
							
							
						
						
									
										13
									
								
								README.md
									
									
									
									
									
								
							| @@ -13,3 +13,16 @@ In a nutshell: | ||||
| - Exposes endpoint for distributing MJPEG stream inside the cluster, | ||||
|   eg by the `camera-tiler` | ||||
| - Exposes endpoint for inspecting DCT blocks where motion has been detected | ||||
|  | ||||
| # Developing | ||||
|  | ||||
| Bundled `docker-compose.yml` brings up: | ||||
|  | ||||
| * [Minio](http://localhost:9001/buckets/camdetect/browse) | ||||
| * [Mongoexpress](http://localhost:8081/db/default/eventlog) | ||||
|  | ||||
| To manually trigger event: | ||||
|  | ||||
| ``` | ||||
| docker kill -sUSR1 camera-motion-detect_camdetect_1 | ||||
| ``` | ||||
|   | ||||
							
								
								
									
										360
									
								
								camdetect.py
									
									
									
									
									
								
							
							
						
						
									
										360
									
								
								camdetect.py
									
									
									
									
									
								
							| @@ -1,30 +1,39 @@ | ||||
| #!/usr/bin/env python3 | ||||
| import aioboto3 | ||||
| import aiohttp | ||||
| import asyncio | ||||
| import cv2 | ||||
| import hashlib | ||||
| import io | ||||
| import json | ||||
| import numpy as np | ||||
| import os | ||||
| import json | ||||
| import signal | ||||
| import socket | ||||
| import sys | ||||
| from datetime import datetime | ||||
| from datetime import datetime, timedelta | ||||
| from jpeg2dct.numpy import loads | ||||
| from motor.motor_asyncio import AsyncIOMotorClient | ||||
| from prometheus_client import Counter, Gauge | ||||
| from sanic import Sanic, response | ||||
| from sanic.response import stream | ||||
| from sanic_prometheus import monitor | ||||
| from time import time | ||||
|  | ||||
| _, url = sys.argv | ||||
|  | ||||
| AWS_ACCESS_KEY_ID = os.getenv("AWS_ACCESS_KEY_ID", "camdetect") | ||||
| AWS_SECRET_ACCESS_KEY = os.environ["AWS_SECRET_ACCESS_KEY"] | ||||
| S3_ENDPOINT_URL = os.environ["S3_ENDPOINT_URL"] | ||||
| S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME", "camdetect") | ||||
| MONGO_URI = os.getenv("MONGO_URI", "mongodb://127.0.0.1:27017/default") | ||||
| FQDN = socket.getfqdn() | ||||
| MONGO_COLLECTION = os.getenv("MONGO_COLLETION", "eventlog") | ||||
| SOURCE_NAME = os.environ["SOURCE_NAME"] | ||||
| SLIDE_WINDOW = 2 | ||||
| DCT_BLOCK_SIZE = 8 | ||||
|  | ||||
| # How many blocks have changes to consider movement in frame | ||||
| THRESHOLD_BLOCKS = 20 | ||||
| THRESHOLD_MOTION_START = 2 | ||||
| # Percentage of blocks active to consider movement in whole frame | ||||
| THRESHOLD_RATIO = int(os.getenv("THRESHOLD_RATIO", "5")) | ||||
|  | ||||
| CHUNK_BOUNDARY = b"\n--frame\nContent-Type: image/jpeg\n\n" | ||||
|  | ||||
| counter_dropped_bytes = Counter( | ||||
| @@ -55,32 +64,218 @@ counter_errors = Counter( | ||||
| counter_movement_frames = Counter( | ||||
|     "camdetect_movement_frames", | ||||
|     "Frames with movement detected in them") | ||||
| counter_uploaded_frames = Counter( | ||||
|     "camdetect_uploaded_frames", | ||||
|     "Frames uploaded via S3") | ||||
| counter_upload_errors = Counter( | ||||
|     "camdetect_upload_errors", | ||||
|     "Frames upload errors related to S3") | ||||
| counter_upload_dropped_frames = Counter( | ||||
|     "camdetect_upload_dropped_frames", | ||||
|     "Frames that were dropped due to S3 upload queue being full") | ||||
| counter_download_dropped_frames = Counter( | ||||
|     "camdetect_download_dropped_frames", | ||||
|     "Frames that were downloaded from camera, but not processed") | ||||
|  | ||||
| gauge_last_frame = Gauge( | ||||
|     "camdetect_last_frame", | ||||
|     "Timestamp of last frame") | ||||
| gauge_frame_motion_detected = Gauge( | ||||
|     "camdetect_frame_motion_detected", | ||||
|     "Motion detected in frame") | ||||
| gauge_event_active = Gauge( | ||||
|     "camdetect_event_active", | ||||
|     "Motion event in progress") | ||||
| gauge_total_blocks = Gauge( | ||||
|     "camdetect_total_blocks", | ||||
|     "Total DCT blocks") | ||||
| gauge_active_blocks = Gauge( | ||||
|     "camdetect_active_blocks", | ||||
|     "Total active, threshold exceeding DCT blocks") | ||||
| gauge_upload_queue_size = Gauge( | ||||
|     "camdetect_upload_queue_size", | ||||
|     "Number of frames awaiting to be uploaded via S3") | ||||
| gauge_download_queue_size = Gauge( | ||||
|     "camdetect_download_queue_size", | ||||
|     "Number of frames awaiting to be processed by motion detection loop") | ||||
|  | ||||
| # Reset some gauges | ||||
| gauge_frame_motion_detected.set(0) | ||||
| gauge_upload_queue_size.set(0) | ||||
| gauge_download_queue_size.set(0) | ||||
|  | ||||
| assert SLIDE_WINDOW <= 8  # This is 256 frames which should be enough | ||||
|  | ||||
|  | ||||
| class Frame(object): | ||||
|     def __init__(self, blob): | ||||
|         self.blob = blob | ||||
|         self.y, self.cb, self.cr = loads(blob) | ||||
|         self.mask = np.int16(self.y[:, :, 0]) | ||||
| async def upload(bucket, blob: bytes, event_id): | ||||
|     """ | ||||
|     Upload single JPEG blob to S3 bucket | ||||
|     """ | ||||
|  | ||||
|     # Generate S3 path based on the JPEG blob SHA512 digest | ||||
|     fp = hashlib.sha512(blob).hexdigest() | ||||
|     path = "%s/%s/%s/%s.jpg" % (fp[:4], fp[4:8], fp[8:12], fp[12:]) | ||||
|     await bucket.upload_fileobj(io.BytesIO(blob), path) | ||||
|  | ||||
|     # Add screenshot path to the event | ||||
|     app.ctx.coll.update_one({ | ||||
|         "_id": event_id | ||||
|     }, { | ||||
|         "$addToSet": { | ||||
|             "screenshots": path, | ||||
|         } | ||||
|     }) | ||||
|  | ||||
|     # TODO: Handle 16MB maximum document size | ||||
|  | ||||
|  | ||||
| async def client_connect(resp): | ||||
| async def uploader(queue): | ||||
|     """ | ||||
|     Uploader task grabs JPEG blobs from upload queue and uploads them to S3 | ||||
|     """ | ||||
|     session = aioboto3.Session( | ||||
|         aws_access_key_id=AWS_ACCESS_KEY_ID, | ||||
|         aws_secret_access_key=AWS_SECRET_ACCESS_KEY) | ||||
|     async with session.resource("s3", endpoint_url=S3_ENDPOINT_URL) as s3: | ||||
|         bucket = await s3.Bucket(S3_BUCKET_NAME) | ||||
|         while True: | ||||
|             blob, event_id = await queue.get() | ||||
|             await upload(bucket, blob, event_id) | ||||
|             counter_uploaded_frames.inc() | ||||
|             gauge_upload_queue_size.set(queue.qsize()) | ||||
|  | ||||
|  | ||||
| class ReferenceFrame(): | ||||
|     """ | ||||
|     ReferenceFrame keeps last 2 ^ size frames to infer the background scene | ||||
|     compared to which motion is detected | ||||
|  | ||||
|     This is pretty much what background subtractor does in OpenCV, | ||||
|     only difference is that we want have better performance instead of | ||||
|     accuracy | ||||
|     """ | ||||
|     class NotEnoughFrames(Exception): | ||||
|         pass | ||||
|  | ||||
|     def __init__(self, size=SLIDE_WINDOW): | ||||
|         self.y = [] | ||||
|         self.cumulative = None | ||||
|         self.size = size | ||||
|  | ||||
|     def put(self, y): | ||||
|         if self.cumulative is None: | ||||
|             self.cumulative = np.copy(y) | ||||
|         else: | ||||
|             self.cumulative += y | ||||
|         self.y.append(y) | ||||
|         if len(self.y) > 2 ** self.size: | ||||
|             self.cumulative -= self.y[0] | ||||
|             self.y = self.y[1:] | ||||
|  | ||||
|     def get(self): | ||||
|         if len(self.y) == 2 ** self.size: | ||||
|             return self.cumulative >> SLIDE_WINDOW | ||||
|         else: | ||||
|             raise self.NotEnoughFrames() | ||||
|  | ||||
|  | ||||
| async def motion_detector(reference_frame, download_queue, upload_queue): | ||||
|     """ | ||||
|     Motion detector grabs JPEG blobs and Y channel coefficients | ||||
|     from download queue, performs motion detection and pushes relevant | ||||
|     JPEG blobs to upload queue going to S3 | ||||
|     """ | ||||
|     event_id = None | ||||
|     differing_blocks = [] | ||||
|     while True: | ||||
|         dt, blob, y = await download_queue.get() | ||||
|         app.ctx.last_frame = blob | ||||
|  | ||||
|         # Signal /bypass and /debug handlers about new frame | ||||
|         app.ctx.event_frame.set() | ||||
|         app.ctx.event_frame.clear() | ||||
|  | ||||
|         # Update metrics | ||||
|         gauge_total_blocks.set(y.shape[0] * y.shape[1]) | ||||
|         gauge_last_frame.set(dt.timestamp()) | ||||
|  | ||||
|         reference_frame.put(y) | ||||
|         try: | ||||
|             app.ctx.mask = cv2.inRange(cv2.absdiff(y, | ||||
|                                        reference_frame.get()), 25, 65535) | ||||
|         except ReferenceFrame.NotEnoughFrames: | ||||
|             app.ctx.mask = None | ||||
|             motion_detected = False | ||||
|         else: | ||||
|             # Implement dumb Kalman filter | ||||
|             active_blocks = np.count_nonzero(app.ctx.mask) | ||||
|             differing_blocks.append(active_blocks) | ||||
|             differing_blocks[:] = differing_blocks[-10:] | ||||
|             total_blocks = app.ctx.mask.shape[0] * app.ctx.mask.shape[1] | ||||
|             threshold_blocks = THRESHOLD_RATIO * total_blocks / 100 | ||||
|             average_blocks = sum(differing_blocks) / len(differing_blocks) | ||||
|             motion_detected = average_blocks > threshold_blocks | ||||
|  | ||||
|             # Update metrics | ||||
|             gauge_active_blocks.set(active_blocks) | ||||
|             gauge_total_blocks.set(total_blocks) | ||||
|  | ||||
|         # Propagate SIGUSR1 signal handler | ||||
|         if app.ctx.manual_trigger: | ||||
|             print("Manually triggering event via SIGUSR1") | ||||
|             motion_detected = True | ||||
|             app.ctx.manual_trigger = False | ||||
|  | ||||
|         # Handle event start | ||||
|         if motion_detected and not event_id: | ||||
|             result = await app.ctx.coll.insert_one({ | ||||
|                 "timestamp": dt, | ||||
|                 "event": "motion-detected", | ||||
|                 "started": dt, | ||||
|                 "finished": dt + timedelta(minutes=2), | ||||
|                 "component": "camdetect", | ||||
|                 "source": SOURCE_NAME, | ||||
|                 "screenshots": [], | ||||
|                 "action": "event", | ||||
|             }) | ||||
|             app.ctx.event_id = event_id = result.inserted_id | ||||
|             gauge_event_active.set(1) | ||||
|  | ||||
|         # Handle image upload | ||||
|         if motion_detected and event_id: | ||||
|             counter_movement_frames.inc() | ||||
|             try: | ||||
|                 # Push JPEG blob into upload queue | ||||
|                 upload_queue.put_nowait((blob, event_id)) | ||||
|             except asyncio.QueueFull: | ||||
|                 counter_upload_dropped_frames.inc() | ||||
|             gauge_upload_queue_size.set(upload_queue.qsize()) | ||||
|  | ||||
|         # Handle event end | ||||
|         if not motion_detected and event_id: | ||||
|             app.ctx.coll.update_one({ | ||||
|                 "_id": event_id | ||||
|             }, { | ||||
|                 "$set": { | ||||
|                     "finished": dt, | ||||
|                 } | ||||
|             }) | ||||
|             app.ctx.event_id = event_id = None | ||||
|             gauge_event_active.set(0) | ||||
|  | ||||
|  | ||||
| async def download(resp, queue): | ||||
|     """ | ||||
|     This coroutine iterates over HTTP connection chunks | ||||
|     assembling the original JPEG blobs and decodes the | ||||
|     DCT coefficients of the frames | ||||
|     """ | ||||
|     buf = b"" | ||||
|     print("Upstream connection opened with status:", resp.status) | ||||
|     async for data, end_of_http_chunk in resp.content.iter_chunks(): | ||||
|         counter_rx_bytes.inc(len(data)) | ||||
|         if end_of_http_chunk: | ||||
|             counter_rx_chunks.inc() | ||||
|  | ||||
|         if buf: | ||||
|             # seek end | ||||
|             marker = data.find(b"\xff\xd9") | ||||
| @@ -88,55 +283,20 @@ async def client_connect(resp): | ||||
|                 buf += data | ||||
|                 continue | ||||
|             else: | ||||
|                 app.ctx.last_frame = Frame(buf + data[:marker+2]) | ||||
|                 gauge_last_frame.set(time()) | ||||
|                 # Assemble JPEG blob | ||||
|                 blob = buf + data[:marker+2] | ||||
|  | ||||
|                 reference = app.ctx.last_frame.mask | ||||
|                 app.ctx.frames.append(reference) | ||||
|                 if app.ctx.avg is None: | ||||
|                     app.ctx.avg = np.copy(reference) | ||||
|                 else: | ||||
|                     app.ctx.avg += reference | ||||
|  | ||||
|                 if len(app.ctx.frames) > 2 ** SLIDE_WINDOW: | ||||
|                     app.ctx.avg -= app.ctx.frames[0] | ||||
|                     app.ctx.frames = app.ctx.frames[1:] | ||||
|  | ||||
|                 if len(app.ctx.frames) == 2 ** SLIDE_WINDOW: | ||||
|                     app.ctx.thresh = cv2.inRange(cv2.absdiff( | ||||
|                         app.ctx.last_frame.mask, | ||||
|                         app.ctx.avg >> SLIDE_WINDOW), 25, 65535) | ||||
|                 else: | ||||
|                     app.ctx.thresh = None | ||||
|                 gauge_total_blocks.set(app.ctx.last_frame.mask.shape[0] * | ||||
|                                        app.ctx.last_frame.mask.shape[1]) | ||||
|  | ||||
|                 movement_detected = False | ||||
|                 if app.ctx.thresh is not None: | ||||
|                     differing_blocks = np.count_nonzero(app.ctx.thresh) | ||||
|                     gauge_active_blocks.set(differing_blocks) | ||||
|                     if differing_blocks > THRESHOLD_BLOCKS: | ||||
|                         counter_movement_frames.inc() | ||||
|                         movement_detected = True | ||||
|  | ||||
|                 if movement_detected: | ||||
|                     if app.ctx.motion_frames < 30: | ||||
|                         app.ctx.motion_frames += 1 | ||||
|                 else: | ||||
|                     if app.ctx.motion_frames > 0: | ||||
|                         app.ctx.motion_frames -= 1 | ||||
|  | ||||
|                 if app.ctx.motion_frames > 20: | ||||
|                     if not app.ctx.motion_start: | ||||
|                         app.ctx.motion_start = datetime.utcnow() | ||||
|                         print("Movement start") | ||||
|                 elif app.ctx.motion_frames < 5: | ||||
|                     app.ctx.motion_start = None | ||||
|                     print("Movement end") | ||||
|  | ||||
|                 app.ctx.event_frame.set() | ||||
|                 app.ctx.event_frame.clear() | ||||
|                 # Parse DCT coeffs and keep DCT coeffs only for Y channel | ||||
|                 y, _, _ = loads(blob) | ||||
|  | ||||
|                 try: | ||||
|                     # Convert Y component to 16 bit for easier handling | ||||
|                     queue.put_nowait(( | ||||
|                         datetime.utcnow(), | ||||
|                         blob, | ||||
|                         np.int16(y[:, :, 0]))) | ||||
|                 except asyncio.QueueFull: | ||||
|                     counter_download_dropped_frames.inc() | ||||
|                 data = data[marker+2:] | ||||
|                 buf = b"" | ||||
|                 counter_rx_frames.inc() | ||||
| @@ -149,23 +309,25 @@ async def client_connect(resp): | ||||
|             counter_dropped_bytes.inc(len(data)) | ||||
|  | ||||
|  | ||||
| async def client(): | ||||
| async def downloader(queue: asyncio.Queue): | ||||
|     """ | ||||
|     Downloader task connects to MJPEG source and | ||||
|     pushes the JPEG frames to a queue | ||||
|     """ | ||||
|     while True: | ||||
|         to = aiohttp.ClientTimeout(connect=5, sock_read=2) | ||||
|         async with aiohttp.ClientSession(timeout=to) as session: | ||||
|             print("Opening upstream connection to %s" % url) | ||||
|             try: | ||||
|                 async with session.get(url) as resp: | ||||
|                     await client_connect(resp) | ||||
|                     await download(resp, queue) | ||||
|             except (aiohttp.ClientError, asyncio.exceptions.TimeoutError) as e: | ||||
|                 j = "%s.%s" % (e.__class__.__module__, e.__class__.__name__) | ||||
|                 print("Caught exception %s" % j) | ||||
|                 counter_errors.labels(exception=j).inc() | ||||
|         await asyncio.sleep(1) | ||||
|  | ||||
|  | ||||
| app = Sanic("lease") | ||||
| app.config["WTF_CSRF_ENABLED"] = False | ||||
| app = Sanic("camdetect") | ||||
|  | ||||
|  | ||||
| @app.route("/bypass") | ||||
| @@ -173,15 +335,13 @@ async def bypass_stream_wrapper(request): | ||||
|     async def stream_camera(response): | ||||
|         while True: | ||||
|             await app.ctx.event_frame.wait() | ||||
|             data = CHUNK_BOUNDARY + app.ctx.last_frame.blob | ||||
|             data = CHUNK_BOUNDARY + app.ctx.last_frame | ||||
|             await response.write(data) | ||||
|             counter_tx_bytes.inc(len(data)) | ||||
|             counter_tx_frames.inc() | ||||
|  | ||||
|     return response.stream( | ||||
|                 stream_camera, | ||||
|                 content_type="multipart/x-mixed-replace; boundary=frame" | ||||
|             ) | ||||
|                 content_type="multipart/x-mixed-replace; boundary=frame") | ||||
|  | ||||
|  | ||||
| @app.route("/debug") | ||||
| @@ -189,21 +349,30 @@ async def stream_wrapper(request): | ||||
|     async def stream_camera(response): | ||||
|         while True: | ||||
|             await app.ctx.event_frame.wait() | ||||
|             arr = np.frombuffer(app.ctx.last_frame.blob, dtype=np.uint8) | ||||
|             img = cv2.imdecode(arr, cv2.IMREAD_UNCHANGED) | ||||
|             if len(app.ctx.frames) == 2 ** SLIDE_WINDOW: | ||||
|                 for y in range(0, len(app.ctx.last_frame.mask)): | ||||
|                     for x in range(0, len(app.ctx.last_frame.mask[0])): | ||||
|                         if app.ctx.thresh[y][x] > 0: | ||||
|                             img[y*DCT_BLOCK_SIZE:(y+1)*DCT_BLOCK_SIZE, | ||||
|                                 x*DCT_BLOCK_SIZE:(x+1)*DCT_BLOCK_SIZE, 2] = 255 | ||||
|  | ||||
|             # Parse JPEG blob | ||||
|             arr = np.frombuffer(app.ctx.last_frame, dtype=np.uint8) | ||||
|             img = cv2.imdecode(arr, cv2.IMREAD_UNCHANGED) | ||||
|  | ||||
|             # Highlight green or red channel depending on whether | ||||
|             # motion event is in progress or not | ||||
|             channel = 2 if app.ctx.event_id else 1 | ||||
|             if app.ctx.mask is not None: | ||||
|                 for y in range(0, app.ctx.mask.shape[0]): | ||||
|                     for x in range(0, app.ctx.mask.shape[1]): | ||||
|                         if app.ctx.mask[y][x] > 0: | ||||
|                             img[y*DCT_BLOCK_SIZE:(y+1)*DCT_BLOCK_SIZE, | ||||
|                                 x*DCT_BLOCK_SIZE:(x+1)*DCT_BLOCK_SIZE, | ||||
|                                 channel] = 255 | ||||
|  | ||||
|             # Compress modified frame as JPEG frame | ||||
|             _, jpeg = cv2.imencode(".jpg", img, (cv2.IMWRITE_JPEG_QUALITY, 80)) | ||||
|             data = CHUNK_BOUNDARY + jpeg.tobytes() | ||||
|             await response.write(data) | ||||
|             counter_tx_bytes.inc(len(data)) | ||||
|             counter_tx_frames.inc() | ||||
|  | ||||
|     # Transmit as chunked MJPEG stream | ||||
|     return response.stream( | ||||
|         stream_camera, | ||||
|         content_type="multipart/x-mixed-replace; boundary=frame" | ||||
| @@ -212,7 +381,7 @@ async def stream_wrapper(request): | ||||
|  | ||||
| @app.route("/readyz") | ||||
| async def ready_check(request): | ||||
|     if len(app.ctx.frames) == 2 ** SLIDE_WINDOW: | ||||
|     if app.ctx.mask is not None: | ||||
|         return response.text("OK") | ||||
|     return response.text("Not enough frames", status=503) | ||||
|  | ||||
| @@ -222,24 +391,41 @@ async def wrapper_stream_event(request): | ||||
|     async def stream_event(response): | ||||
|         while True: | ||||
|             await app.ctx.event_frame.wait() | ||||
|             if len(app.ctx.frames) < 2 ** SLIDE_WINDOW: | ||||
|             if app.ctx.mask is not None: | ||||
|                 continue | ||||
|             s = "data: " + json.dumps(app.ctx.thresh.tolist()) + "\r\n\r\n" | ||||
|             s = "data: " + json.dumps(app.ctx.mask.tolist()) + "\r\n\r\n" | ||||
|             await response.write(s.encode()) | ||||
|             counter_tx_events.inc() | ||||
|     return stream(stream_event, content_type="text/event-stream") | ||||
|  | ||||
|  | ||||
| def handler(signum, frame): | ||||
|     # SIGUSR1 handler for manually triggering an event | ||||
|     app.ctx.manual_trigger = True | ||||
|  | ||||
|  | ||||
| @app.listener("before_server_start") | ||||
| async def setup_db(app, loop): | ||||
|     app.ctx.db = AsyncIOMotorClient(MONGO_URI).get_default_database() | ||||
|     app.ctx.coll = app.ctx.db[MONGO_COLLECTION] | ||||
|     app.ctx.last_frame = None | ||||
|     app.ctx.event_frame = asyncio.Event() | ||||
|     app.ctx.frames = [] | ||||
|     app.ctx.avg = None | ||||
|     app.ctx.motion_frames = 0 | ||||
|     app.ctx.motion_start = None | ||||
|     app.ctx.motion_end = None | ||||
|     asyncio.create_task(client()) | ||||
|     app.ctx.event_id = None | ||||
|     app.ctx.manual_trigger = False | ||||
|     signal.signal(signal.SIGUSR1, handler) | ||||
|  | ||||
|     # Set up processing pipeline | ||||
|     download_queue = asyncio.Queue() | ||||
|     upload_queue = asyncio.Queue() | ||||
|     asyncio.create_task(uploader( | ||||
|         upload_queue)) | ||||
|     asyncio.create_task(downloader( | ||||
|         download_queue)) | ||||
|     asyncio.create_task(motion_detector( | ||||
|         ReferenceFrame(), | ||||
|         download_queue, | ||||
|         upload_queue)) | ||||
|  | ||||
|  | ||||
| monitor(app).expose_endpoint() | ||||
|  | ||||
|   | ||||
| @@ -1,7 +1,6 @@ | ||||
| version: '3.7' | ||||
|  | ||||
| # All keys here are for dev instance only, do not put prod keys here | ||||
| # To override and use inventory from prod use .env file | ||||
|  | ||||
| services: | ||||
|   camdetect: | ||||
| @@ -13,7 +12,9 @@ services: | ||||
|     command: http://user:123456@127.0.0.1:8080?action=stream | ||||
|     environment: | ||||
|       - MJPEGSTREAMER_CREDENTIALS=user:123456 | ||||
|     env_file: .env | ||||
|       - AWS_SECRET_ACCESS_KEY=2mSI6HdbJ8 | ||||
|       - S3_ENDPOINT_URL=http://127.0.0.1:9000 | ||||
|       - SOURCE_NAME=dummy | ||||
|  | ||||
|   mongoexpress: | ||||
|     restart: always | ||||
| @@ -42,16 +43,20 @@ services: | ||||
|       - --config.file=/config/prometheus.yml | ||||
|     volumes: | ||||
|       - ./config:/config:ro | ||||
|     logging: | ||||
|       driver: none | ||||
|  | ||||
|   minio: | ||||
|     restart: always | ||||
|     network_mode: host | ||||
|     image: bitnami/minio:latest | ||||
|     environment: | ||||
|       - MINIO_ACCESS_KEY=kspace-mugshot | ||||
|       - MINIO_ACCESS_KEY=camdetect | ||||
|       - MINIO_SECRET_KEY=2mSI6HdbJ8 | ||||
|       - MINIO_DEFAULT_BUCKETS=kspace-mugshot:download | ||||
|       - MINIO_DEFAULT_BUCKETS=camdetect | ||||
|       - MINIO_CONSOLE_PORT_NUMBER=9001 | ||||
|     logging: | ||||
|       driver: none | ||||
|  | ||||
|   mjpg-streamer: | ||||
|     network_mode: host | ||||
|   | ||||
		Reference in New Issue
	
	Block a user