10
0
Fork 0

switched to Arduino

This commit is contained in:
Silver Kuusik 2019-08-14 13:47:02 +02:00
parent b69f3d8b2a
commit a82c96de1a
8 changed files with 414 additions and 890 deletions

View File

@ -5,24 +5,7 @@ SERIAL_PORT=/dev/tty.usbserial-1410
#SERIAL_PORT=/dev/tty.SLAB_USBtoUART
#SERIAL_PORT=/dev/tty.wchusbserial1410
all: flash delay libs config update reset
delay:
sleep 3
reset:
esptool.py -p $(SERIAL_PORT) --after hard_reset read_mac
libs:
ampy -d 0.5 -p $(SERIAL_PORT) put uwebsockets.py
update:
ampy -d 0.5 -p $(SERIAL_PORT) put hal.py
ampy -d 0.5 -p $(SERIAL_PORT) put main.py
ampy -d 0.5 -p $(SERIAL_PORT) put boot.py
config:
ampy -d 0.5 -p $(SERIAL_PORT) put config.json
all: flash
flash:
esptool.py -p $(SERIAL_PORT) -b 460800 erase_flash

53
boot.py
View File

@ -1,53 +0,0 @@
# Import functions from time library
from utime import ticks_us, sleep_us, sleep_ms
# Give time to cancel boot script
print("Press Ctrl-C to stop boot script...")
sleep_ms(200)
# Import libraries
import os
import ujson
import network
import _thread
import uwebsockets
from machine import Timer, reset
from hal import *
# Loading libraries takes ca 400ms
# Open and parse the config file
with open("config.json", "r") as config_file:
config = ujson.load(config_file)
# Initialize the SumoRobot object
sumorobot = Sumorobot(config)
# Indiacte booting with blinking status LED
timer = Timer(0)
timer.init(period=2000, mode=Timer.PERIODIC, callback=sumorobot.toggle_led)
# Connected Wi-Fi SSID
ssid = None
# Connect to WiFi
wlan = network.WLAN(network.STA_IF)
# Activate the WiFi interface
wlan.active(True)
# If not already connected
if not wlan.isconnected():
# Scan for WiFi networks
networks = wlan.scan()
# Go trough all scanned WiFi networks
for network in networks:
# Extract the networks SSID
temp_ssid = network[0].decode("utf-8")
# Check if the SSID is in the config file
if temp_ssid in config["wifis"].keys():
ssid = temp_ssid
# Start to connect to the pre-configured network
wlan.connect(ssid, config["wifis"][ssid])
break
# Clean up
import gc
gc.collect()

View File

@ -1,19 +0,0 @@
{
"status_led_pin": 5,
"battery_coeff": 2.25,
"sumo_id": "xxxxxxxx",
"firmware_timestamp": "2019.06.09 21:51:00",
"firmware_version": "0.7.0",
"left_servo_tuning": 33,
"right_servo_tuning": 33,
"ultrasonic_threshold": 40,
"boot_code": "code.py",
"left_line_value": 1000,
"right_line_value": 1000,
"left_line_threshold": 1000,
"right_line_threshold": 1000,
"sumo_server": "165.227.140.64:443",
"wifis": {
"RoboKoding": "salakala"
}
}

344
hal.py
View File

@ -1,344 +0,0 @@
import os
import ujson
from utime import sleep_us, sleep_ms
from machine import Pin, PWM, ADC, time_pulse_us
# LEDs
STATUS = 0
OPPONENT = 1
LEFT_LINE = 2
RIGHT_LINE = 3
# Directions
STOP = 0
LEFT = 1
RIGHT = 2
SEARCH = 3
FORWARD = 4
BACKWARD = 5
class Sumorobot(object):
# Constructor
def __init__(self, config = None):
# Config file
self.config = config
# Ultrasonic distance sensor
self.echo = Pin(14, Pin.IN)
self.trigger = Pin(27, Pin.OUT)
# Servo PWM-s
self.pwm_left = PWM(Pin(15), freq=50, duty=0)
self.pwm_right = PWM(Pin(4), freq=50, duty=0)
# LED sensor feedback
self.sensor_feedback = True
# Bottom status LED
self.status_led = Pin(self.config["status_led_pin"], Pin.OUT)
# Bottom status LED is in reverse polarity
self.status_led.value(1)
# Sensor LEDs
self.opponent_led = Pin(16, Pin.OUT)
self.left_line_led = Pin(17, Pin.OUT)
self.right_line_led = Pin(12, Pin.OUT)
# Scope with sensor data
self.sensor_scope = dict()
# WiFi connection
self.is_wifi_connected = False
# Python and Blockly code
self.python_code = ""
self.blockly_code = ""
self.compiled_python_code = ""
# Battery gauge
self.bat_status = 4.3
self.move_counter = 0
self.adc_battery = ADC(Pin(32))
self.bat_charge = Pin(25, Pin.IN)
# The pullups for the phototransistors
Pin(19, Pin.IN, Pin.PULL_UP)
Pin(23, Pin.IN, Pin.PULL_UP)
# The phototransistors
self.last_line = LEFT
self.adc_line_left = ADC(Pin(34))
self.adc_line_right = ADC(Pin(33))
# Set reference voltage to 3.3V
self.adc_battery.atten(ADC.ATTN_11DB)
self.adc_line_left.atten(ADC.ATTN_11DB)
self.adc_line_right.atten(ADC.ATTN_11DB)
# To smooth out ultrasonic sensor value
self.opponent_score = 0
# For terminating sleep
self.terminate = False
# For search mode
self.search = False
self.search_counter = 0
# Memorise previous servo speeds
self.prev_speed = {LEFT: 0, RIGHT: 0}
# Function to set LED states
def set_led(self, led, state):
# Set the given LED state
if led == STATUS:
# Status LED is reverse polarity
self.status_led.value(0 if state else 1)
elif led == OPPONENT:
self.opponent_led.value(state)
elif led == LEFT_LINE:
self.left_line_led.value(state)
elif led == RIGHT_LINE:
self.right_line_led.value(state)
# Function to shortly bink status LED
def toggle_led(self, timer = None):
self.status_led.value(0)
sleep_ms(10)
self.status_led.value(1)
# Function to get battery voltage
def get_battery_voltage(self):
bat = round(self.config["battery_coeff"] * (self.adc_battery.read() * 3.3 / 4096), 2)
# When the SumoRobot is not moving
if self.prev_speed[LEFT] == 0 and self.prev_speed[RIGHT] == 0:
if self.move_counter > 0:
self.move_counter -= 1
if self.bat_status < bat - 0.20 and self.move_counter == 0:
#deepsleep()
pass
self.bat_status = bat
else:
self.move_counter = 10
return bat
# Function to get distance (cm) from the object in front of the SumoRobot
def get_opponent_distance(self):
# Send a pulse
self.trigger.value(0)
sleep_us(5)
self.trigger.value(1)
sleep_us(10)
self.trigger.value(0)
# Wait for the pulse and calculate the distance
return round((time_pulse_us(self.echo, 1, 30000) / 2) / 29.1, 2)
# Function to get boolean if there is something in front of the SumoRobot
def is_opponent(self):
# Get the opponent distance
self.opponent_distance = self.get_opponent_distance()
# When the opponent is close and the ping actually returned
if self.opponent_distance < self.config["ultrasonic_threshold"] and self.opponent_distance > 0:
# When not maximum score
if self.opponent_score < 5:
# Increase the opponent score
self.opponent_score += 1
# When no opponent was detected
else:
# When not lowest score
if self.opponent_score > 0:
# Decrease the opponent score
self.opponent_score -= 1
# When the sensor saw something more than 2 times
opponent = True if self.opponent_score > 2 else False
# Trigger opponent LED
self.set_led(OPPONENT, opponent)
return opponent
# Function to update the config file
def update_config_file(self):
# Update the config file
with open("config.part", "w") as config_file:
config_file.write(ujson.dumps(self.config))
os.rename("config.part", "config.json")
# Function to update line calibration and write it to the config file
def calibrate_line_value(self):
# Read the line sensor values
self.config["left_line_value"] = self.adc_line_left.read()
self.config["right_line_value"] = self.adc_line_right.read()
# Update the config file
self.update_config_file()
# Function to update line threshold and write it to the config file
def set_line_threshold(self, value):
# Read the line sensor values
self.config["left_line_threshold"] = value
self.config["right_line_threshold"] = value
# Update the config file
self.update_config_file()
# Function to update ultrasonic sensor threshold and write it to the config file
def set_ultrasonic_threshold(self, value):
# Read the line sensor values
self.config["ultrasonic_threshold"] = value
# Update the config file
self.update_config_file()
# Function to get light inensity from the phototransistors
def get_line(self, dir):
# Check if the direction is valid
assert dir in (LEFT, RIGHT)
# Return the given line sensor value
if dir == LEFT:
return self.adc_line_left.read()
elif dir == RIGHT:
return self.adc_line_right.read()
def is_line(self, dir):
# Check if the direction is valid
assert dir in (LEFT, RIGHT)
# Return the given line sensor value
if dir == LEFT:
line = abs(self.get_line(LEFT) - self.config["left_line_value"]) > self.config["left_line_threshold"]
self.set_led(LEFT_LINE, line)
last_line = LEFT
return line
elif dir == RIGHT:
line = abs(self.get_line(RIGHT) - self.config["right_line_value"]) > self.config["right_line_threshold"]
self.set_led(RIGHT_LINE, line)
last_line = RIGHT
return line
def set_servo(self, dir, speed):
# Check if the direction is valid
assert dir in (LEFT, RIGHT)
# Check if the speed is valid
assert speed <= 100 and speed >= -100
# When the speed didn't change
if speed == self.prev_speed[dir]:
return
# Record the new speed
self.prev_speed[dir] = speed
# Set the given servo speed
if dir == LEFT:
if speed == 0:
self.pwm_left.duty(0)
else:
# -100 ... 100 to 33 .. 102
self.pwm_left.duty(int(33 + self.config["left_servo_tuning"] + speed * 33 / 100))
elif dir == RIGHT:
if speed == 0:
self.pwm_right.duty(0)
else:
# -100 ... 100 to 33 .. 102
self.pwm_right.duty(int(33 + self.config["right_servo_tuning"] + speed * 33 / 100))
def move(self, dir):
# Check if the direction is valid
assert dir in (SEARCH, STOP, RIGHT, LEFT, BACKWARD, FORWARD)
# Go to the given direction
if dir == STOP:
self.set_servo(LEFT, 0)
self.set_servo(RIGHT, 0)
elif dir == LEFT:
self.set_servo(LEFT, -100)
self.set_servo(RIGHT, -100)
elif dir == RIGHT:
self.set_servo(LEFT, 100)
self.set_servo(RIGHT, 100)
elif dir == SEARCH:
# Change search mode after X seconds
if self.search_counter == 50:
self.search = not self.search
self.search_counter = 0
# When in search mode
if self.search:
# Go forward
self.set_servo(LEFT, 100)
self.set_servo(RIGHT, -100)
elif last_line == RIGHT:
# Go left
self.set_servo(LEFT, -100)
self.set_servo(RIGHT, -100)
else:
# Go right
self.set_servo(LEFT, 100)
self.set_servo(RIGHT, 100)
# Increase search counter
self.search_counter += 1
elif dir == FORWARD:
self.set_servo(LEFT, 100)
self.set_servo(RIGHT, -100)
elif dir == BACKWARD:
self.set_servo(LEFT, -100)
self.set_servo(RIGHT, 100)
def update_sensor_feedback(self):
if self.sensor_feedback:
# Execute to see LED feedback for sensors
self.is_opponent()
self.is_line(LEFT)
self.is_line(RIGHT)
def update_sensor_scope(self):
self.sensor_scope = dict(
left_line = self.get_line(LEFT),
right_line = self.get_line(RIGHT),
opponent = self.get_opponent_distance(),
battery_charge = self.bat_charge.value(),
battery_voltage = self.get_battery_voltage()
)
def get_python_code(self):
return dict(
type = "python_code",
val = self.python_code
)
def get_blockly_code(self):
return dict(
type = "blockly_code",
val = self.blockly_code
)
def get_firmware_version(self):
return dict(
type = "firmware_version",
val = self.config["firmware_version"]
)
def get_sensor_scope(self):
temp = self.sensor_scope
temp['type'] = "sensor_scope"
return temp
def get_threshold_scope(self):
return dict(
type = "threshold_scope",
left_line_value = self.config["left_line_value"],
right_line_value = self.config["right_line_value"],
left_line_threshold = self.config["left_line_threshold"],
right_line_threshold = self.config["right_line_threshold"],
ultrasonic_threshold = self.config["ultrasonic_threshold"]
)
def sleep(self, delay):
# Check for valid delay
assert delay > 0
# Split the delay into 50ms chunks
for j in range(0, delay, 50):
# Check for forceful termination
if self.terminate:
# Terminate the delay
return
else:
sleep_ms(50)

171
main.py
View File

@ -1,171 +0,0 @@
# The code processing thread
def step():
while True:
# Execute to see LED feedback for sensors
sumorobot.update_sensor_feedback()
# Update sensor scope
sumorobot.update_sensor_scope()
# Try to execute the Python code
try:
exec(sumorobot.compiled_python_code)
except:
pass
# When robot was stopped
if sumorobot.terminate:
# Disable forceful termination of delays in code
sumorobot.terminate = False
# Stop the robot
sumorobot.move(STOP)
# Leave time to process WebSocket commands
sleep_ms(50)
# The WebSocket processing thread
def ws_handler():
global conn, watchdog_counter
while True:
# When WiFi has just been reconnected
if wlan.isconnected() and not sumorobot.is_wifi_connected:
print("main.py reconnected to Wi-Fi")
# Stop blinking status LED
timer.deinit()
# Turn status LED to steady ON
sumorobot.set_led(STATUS, True)
sumorobot.is_wifi_connected = True
# When WiFi has just been disconnected
elif not wlan.isconnected() and sumorobot.is_wifi_connected:
print("main.py lost Wi-Fi, reconnecting to Wi-Fi")
# Reinitiate the Wi-Fi connection
wlan.connect(ssid, config["wifis"][ssid])
# Turn OFF status LED
sumorobot.set_led(STATUS, False)
sumorobot.is_wifi_connected = False
# Start bliking status LED
timer.init(period=2000, mode=Timer.PERIODIC, callback=sumorobot.toggle_led)
elif not wlan.isconnected():
# Continue to wait for a WiFi connection
continue
data = None
try: # Try to read from the WebSocket
data = conn.recv()
except: # Socket timeout, no data received
# Increment watchdog counter
watchdog_counter += 1
# When Wi-Fi is connected and X-th exception happened
# Try reconnecting to the WebSocket server
if wlan.isconnected() and watchdog_counter == 3:
print("main.py WebSocket timeout, reconnecting")
conn = uwebsockets.connect(uri)
watchdog_counter = 0
# Continue to try to read data
continue
# When an empty frame was received
if not data:
# Continue to receive data
continue
elif b'forward' in data:
sumorobot.compiled_python_code = ""
sumorobot.move(FORWARD)
elif b'backward' in data:
sumorobot.compiled_python_code = ""
sumorobot.move(BACKWARD)
elif b'right' in data:
sumorobot.compiled_python_code = ""
sumorobot.move(RIGHT)
elif b'left' in data:
sumorobot.compiled_python_code = ""
sumorobot.move(LEFT)
elif b'stop' in data:
sumorobot.compiled_python_code = ""
sumorobot.move(STOP)
# for terminating delays in code
sumorobot.terminate = True
elif b'get_threshold_scope' in data:
conn.send(ujson.dumps(sumorobot.get_threshold_scope()))
elif b'get_sensor_scope' in data:
conn.send(ujson.dumps(sumorobot.get_sensor_scope()))
elif b'get_python_code' in data:
#print("main.py sending python code=", sumorobot.get_python_code())
conn.send(ujson.dumps(sumorobot.get_python_code()))
elif b'get_blockly_code' in data:
#print("main.py sending blockly code=", sumorobot.get_blockly_code())
conn.send(ujson.dumps(sumorobot.get_blockly_code()))
elif b'get_firmware_version' in data:
#print("main.py get_firmware_version")
conn.send(ujson.dumps(sumorobot.get_firmware_version()))
elif b'toggle_sensor_feedback' in data:
data = ujson.loads(data)
sumorobot.sensor_feedback = not sumorobot.sensor_feedback
elif b'set_blockly_code' in data:
data = ujson.loads(data)
#print("main.py Blockly code=", data['val'])
sumorobot.blockly_code = data['val']
elif b'set_python_code' in data:
data = ujson.loads(data)
sumorobot.python_code = data['val']
data['val'] = data['val'].replace(";;", "\n")
#print("main.py python code=", data['val'])
sumorobot.compiled_python_code = compile(data['val'], "snippet", "exec")
elif b'calibrate_line_value' in data:
sumorobot.calibrate_line_value()
#print("main.py: calibrate_line_value")
elif b'set_line_threshold' in data:
data = ujson.loads(data)
sumorobot.set_line_threshold(int(data['val']))
#print("main.py: set_line_threshold")
elif b'set_ultrasonic_threshold' in data:
data = ujson.loads(data)
sumorobot.set_ultrasonic_threshold(int(data['val']))
#print("main.py: set_ultrasonic_threshold")
elif b'Gone' in data:
print("main.py: server said 410 Gone, attempting to reconnect...")
#conn = uwebsockets.connect(url)
else:
print("main.py: unknown cmd=", data)
# When user code (copy.py) exists
if 'code.py' in os.listdir():
print("main.py: loading user code")
# Try to load the user code
try:
with open("code.py", "r") as code:
temp = code.read()
sumorobot.python_code = temp
sumorobot.compiled_python_code = compile(temp, "snippet", "exec")
except:
print("main.py: error loading code.py file")
# Start the code processing thread
_thread.start_new_thread(step, ())
# Wifi watchdog counter
watchdog_counter = 0
# Wait for WiFi to get connected
while not wlan.isconnected():
sleep_ms(100)
watchdog_counter += 1
# When Wi-Fi didn't connect in X seconds
if watchdog_counter == 30:
print("main.py reconnecting to Wi-Fi")
# Reinitiate the Wi-Fi connection
wlan.connect(ssid, config["wifis"][ssid])
# Restart watchdog counter
watchdog_counter = 0
# Connect to the websocket
uri = "ws://%s/p2p/sumo-%s/browser/" % (config['sumo_server'], config['sumo_id'])
conn = uwebsockets.connect(uri)
# Stop bootup blinking
timer.deinit()
# WiFi is connected
sumorobot.is_wifi_connected = True
# Indicate that the WebSocket is connected
sumorobot.set_led(STATUS, True)
# Start the Websocket processing thread
_thread.start_new_thread(ws_handler, ())

17
platformio.ini Normal file
View File

@ -0,0 +1,17 @@
;PlatformIO Project Configuration File
;
; Build options: build flags, source filter
; Upload options: custom upload port, speed and extra flags
; Library options: dependencies, extra library storages
; Advanced options: extra scripting
;
; Please visit documentation for the other options and examples
; https://docs.platformio.org/page/projectconf.html
[env:lolin32]
platform = espressif32
board = lolin32
framework = arduino
upload_speed = 460800
monitor_speed = 115200
lib_deps = NewPing

396
src/main.cpp Normal file
View File

@ -0,0 +1,396 @@
/*
This the code that runs on the SumoRobots
*/
// Include BLE libraries
#include <BLEDevice.h>
#include <BLEServer.h>
#include <BLEUtils.h>
#include <BLE2902.h>
#include <BLE2904.h>
// Include other libraries
#include <string.h>
#include <Ticker.h>
#include <NewPing.h>
#include <Arduino.h>
#include <Preferences.h>
#define DEBUG true
#define VERSION "0.8.0"
#define VERSION_TIMESTAMP "2019.08.13 08:00"
// See the following for generating UUIDs:
// https://www.uuidgenerator.net/
#define NUS_SERVICE_UUID "6E400001-B5A3-F393-E0A9-E50E24DCCA9E" // NUS service UUID
#define NUS_CHARACTERISTIC_RX_UUID "6E400002-B5A3-F393-E0A9-E50E24DCCA9E"
#define NUS_CHARACTERISTIC_TX_UUID "6E400003-B5A3-F393-E0A9-E50E24DCCA9E"
// Cleate BLE variables
BLEServer * bleServer = NULL;
bool deviceConnected = false;
bool oldDeviceConnected = false;
BLECharacteristic * nusTxCharacteristic;
BLECharacteristic * batteryLevelCharacteristic;
// Create preferences persistence
Preferences preferences;
// Create timers
Ticker sonarTimer;
Ticker batteryTimer;
Ticker connectionLedTimer;
// Battery stuff
float batteryVoltage;
bool robotMoving = false;
uint8_t batteryLevel = 0;
uint8_t tempBatteryLevel = 0;
// Sonar stuff
uint8_t sonarValue;
NewPing sonar(27, 14, 200);
uint8_t sonarThreshold = 40;
// Line stuff
uint16_t leftLineValue;
uint16_t rightLineValue;
uint16_t leftLineValueField = 0;
uint16_t rightLineValueField = 0;
uint16_t leftLineThreshold = 1000;
uint16_t rightLineThreshold = 1000;
// Other sensor stuff
uint8_t sensorValues[6];
bool ledFeedbackEnabled = true;
// Move command names
std::string cmdStop("stop");
std::string cmdLeft("left");
std::string cmdRight("right");
std::string cmdForward("forward");
std::string cmdBackward("backward");
// Other command names
std::string cmdLed("led");
std::string cmdLine("line");
std::string cmdName("name");
std::string cmdSonar("sonar");
std::string cmdServo("servo");
std::string cmdLedFeedback("ledf");
void setLed(char led, char value) {
// Convert the value to a HIGH or LOW
bool state = value == '1' ? HIGH : LOW;
if (led == 'c') {
// Connection status LED is opposite value
digitalWrite(5, !state);
}
else if (led == 's') {
digitalWrite(16, state);
}
else if (led == 'r') {
digitalWrite(12, state);
}
else if (led == 'l') {
digitalWrite(17, state);
}
}
void setServo(char servo, int8_t speed) {
Serial.println(speed);
if (servo == 'l') {
ledcWrite(1, map(speed, -100, 100, 1, 100));
}
else if (servo == 'r') {
ledcWrite(2, map(speed, -100, 100, 1, 30));
}
}
void updateSensorFeedback() {
if (sonarValue <= sonarThreshold) {
digitalWrite(16, HIGH);
}
else {
digitalWrite(16, LOW);
}
if (abs(leftLineValue - leftLineValueField) > leftLineThreshold) {
digitalWrite(17, HIGH);
}
else {
digitalWrite(17, LOW);
}
if (abs(rightLineValue - rightLineValueField) > rightLineThreshold) {
digitalWrite(12, HIGH);
}
else {
digitalWrite(12, LOW);
}
}
void updateSonarValue() {
// Update the sensor values
sonarValue = sonar.ping_cm();
// When we didn't receive a ping back
// set to max distance
if (sonarValue == 0) sonarValue = 255;
leftLineValue = analogRead(34);
rightLineValue = analogRead(33);
if (ledFeedbackEnabled) updateSensorFeedback();
sensorValues[0] = sonarValue;
sensorValues[1] = leftLineValue >> 8;
sensorValues[2] = leftLineValue;
sensorValues[3] = rightLineValue >> 8;
sensorValues[4] = rightLineValue;
sensorValues[5] = digitalRead(25);
// When BLE is connected
if (deviceConnected) {
// Notify the new sensor values
nusTxCharacteristic->setValue(sensorValues, 6);
nusTxCharacteristic->notify();
}
}
void updateBatteryLevel() {
// Don't update battery level when robot is moving
// the servo motors lower the battery voltage
// TODO: wait still a little more after moving
// for the voltage to settle
if (robotMoving) {
return;
}
// Calculate the battery voltage
batteryVoltage = 2.12 * (analogRead(32) * 3.3 / 4096);
// Calculate battery percentage
tempBatteryLevel = 0.0 + ((100.0 - 0.0) / (4.2 - 3.2)) * (batteryVoltage - 3.2);
// When battery level changed more than 3%
if (abs(batteryLevel - tempBatteryLevel) > 3) {
// Update battery level
batteryLevel = tempBatteryLevel;
}
// Notify the new battery level
batteryLevelCharacteristic->setValue(&batteryLevel, 1);
batteryLevelCharacteristic->notify();
#if DEBUG
Serial.print(batteryVoltage);
Serial.print(" : ");
Serial.println(batteryLevel);
#endif
}
void blinkConnectionLed() {
digitalWrite(5, LOW);
delay(20);
digitalWrite(5, HIGH);
}
// BLE connect and disconnect callbacks
class MyServerCallbacks: public BLEServerCallbacks {
void onConnect(BLEServer * pServer) {
deviceConnected = true;
};
void onDisconnect(BLEServer * pServer) {
deviceConnected = false;
}
};
// BLE NUS received callback
class MyCallbacks: public BLECharacteristicCallbacks {
void onWrite(BLECharacteristic * nusRxCharacteristic) {
// Get the received command over BLE
std::string cmd = nusRxCharacteristic->getValue();
#if DEBUG
Serial.println(cmd.c_str());
#endif
if (cmd.length() > 0) {
//int speed = atoi(rxValue.c_str());
//Serial.println(speed);
//ledcWrite(1, speed); // left 1 ... 100
//ledcWrite(2, speed); // right 1 ... 30
// Specify command
if (cmd == cmdForward) {
robotMoving = true;
ledcWrite(1, 100);
ledcWrite(2, 1);
}
else if (cmd == cmdBackward) {
robotMoving = true;
ledcWrite(1, 1);
ledcWrite(2, 30);
}
else if (cmd == cmdLeft) {
robotMoving = true;
ledcWrite(1, 1);
ledcWrite(2, 1);
}
else if (cmd == cmdRight) {
robotMoving = true;
ledcWrite(1, 100);
ledcWrite(2, 30);
}
else if (cmd == cmdStop) {
robotMoving = false;
ledcWrite(1, 0);
ledcWrite(2, 0);
}
else if (cmd == cmdLedFeedback) {
ledFeedbackEnabled = !ledFeedbackEnabled;
}
else if (cmd.find(cmdLed) != std::string::npos) {
setLed(cmd.at(3), cmd.at(4));
}
else if (cmd.find(cmdLine) != std::string::npos) {
// Get the threshold value
leftLineThreshold = atoi(cmd.substr(4, cmd.length() - 4).c_str());
rightLineThreshold = leftLineThreshold;
// Remember value on the field (white or black)
leftLineValueField = analogRead(34);
rightLineValueField = analogRead(33);
// Save the threshold value in the persistence
preferences.begin("sumorobot", false);
preferences.putUInt("line_threshold", leftLineThreshold);
preferences.end();
}
else if (cmd.find(cmdSonar) != std::string::npos) {
sonarThreshold = atoi(cmd.substr(5, cmd.length() - 5).c_str());
// Save the threshold value in the persistence
preferences.begin("sumorobot", false);
preferences.putUInt("sonar_threshold", sonarThreshold);
preferences.end();
}
else if (cmd.find(cmdServo) != std::string::npos) {
setServo(cmd.at(5), atoi(cmd.substr(6, cmd.length() - 6).c_str()));
}
else if (cmd.find(cmdName) != std::string::npos) {
preferences.begin("sumorobot", false);
preferences.putString("name", cmd.substr(4, cmd.length() - 4).c_str());
preferences.end();
}
}
}
};
void setup() {
#if DEBUG
Serial.begin(115200);
#endif
// Start preferences persistence
preferences.begin("sumorobot", false);
// Create the BLE device
Serial.println(preferences.getString("name", "SumoRobot").c_str());
BLEDevice::init(preferences.getString("name", "SumoRobot").c_str());
preferences.end();
// Create the BLE server
bleServer = BLEDevice::createServer();
bleServer->setCallbacks(new MyServerCallbacks());
// Create device info service and characteristic
BLEService * deviceInfoService = bleServer->createService(BLEUUID((uint16_t) 0x180a));
BLECharacteristic * modelCharacteristic = deviceInfoService->createCharacteristic(
(uint16_t) 0x2A24, BLECharacteristic::PROPERTY_READ);
BLECharacteristic * firmwareCharacteristic = deviceInfoService->createCharacteristic(
(uint16_t) 0x2A26, BLECharacteristic::PROPERTY_READ);
BLECharacteristic * manufacturerCharacteristic = deviceInfoService->createCharacteristic(
(uint16_t) 0x2a29, BLECharacteristic::PROPERTY_READ);
manufacturerCharacteristic->setValue("RoboKoding LTD");
modelCharacteristic->setValue("SumoRobot");
firmwareCharacteristic->setValue(VERSION);
// Create battery service
BLEService * batteryService = bleServer->createService(BLEUUID((uint16_t) 0x180f));
// Mandatory battery level characteristic with notification and presence descriptor
BLE2904* batteryLevelDescriptor = new BLE2904();
batteryLevelDescriptor->setFormat(BLE2904::FORMAT_UINT8);
batteryLevelDescriptor->setNamespace(1);
batteryLevelDescriptor->setUnit(0x27ad);
// Create battery level characteristics
batteryLevelCharacteristic = batteryService->createCharacteristic(
(uint16_t) 0x2a19, BLECharacteristic::PROPERTY_READ | BLECharacteristic::PROPERTY_NOTIFY);
batteryLevelCharacteristic->addDescriptor(batteryLevelDescriptor);
batteryLevelCharacteristic->addDescriptor(new BLE2902());
// Create the BLE NUS service
BLEService * nusService = bleServer->createService(NUS_SERVICE_UUID);
// Create a BLE NUS transmit characteristic
nusTxCharacteristic = nusService->createCharacteristic(
NUS_CHARACTERISTIC_TX_UUID, BLECharacteristic::PROPERTY_NOTIFY);
nusTxCharacteristic->addDescriptor(new BLE2902());
// Create a BLE NUS receive characteristics
BLECharacteristic * nusRxCharacteristic = nusService->createCharacteristic(
NUS_CHARACTERISTIC_RX_UUID, BLECharacteristic::PROPERTY_WRITE);
nusRxCharacteristic->setCallbacks(new MyCallbacks());
// Start the services
deviceInfoService->start();
batteryService->start();
nusService->start();
// Start advertising
bleServer->getAdvertising()->start();
#if DEBUG
Serial.println("Waiting a client connection to notify...");
#endif
// Setup BLE connection status LED
pinMode(5, OUTPUT);
connectionLedTimer.attach_ms(2000, blinkConnectionLed);
// Setup the left servo PWM
ledcSetup(1, 50, 10);
ledcAttachPin(15, 1);
// Setup the right servo PWM
ledcSetup(2, 50, 8);
ledcAttachPin(4, 2);
// Phototransistor pull-ups
pinMode(19, INPUT_PULLUP);
pinMode(23, INPUT_PULLUP);
// Setup battery charge detection pin
pinMode(25, INPUT);
// Setup sensor feedback LED pins
pinMode(16, OUTPUT);
pinMode(17, OUTPUT);
pinMode(12, OUTPUT);
// Setup ADC for reading phototransistors and battery
analogSetAttenuation(ADC_11db);
adcAttachPin(32);
adcAttachPin(33);
adcAttachPin(34);
// Setup sonar timer to update it's value
sonarTimer.attach_ms(50, updateSonarValue);
// Setup battery level timer to update it's value
batteryTimer.attach(5, updateBatteryLevel);
updateBatteryLevel();
}
void loop() {
// When BLE got disconnected
if (!deviceConnected && oldDeviceConnected) {
delay(500); // Give the bluetooth stack the chance to get things ready
bleServer->startAdvertising(); // Restart advertising
#if DEBUG
Serial.println("start advertising");
#endif
oldDeviceConnected = deviceConnected;
connectionLedTimer.attach_ms(2000, blinkConnectionLed);
}
// When BLE got connected
if (deviceConnected && !oldDeviceConnected) {
oldDeviceConnected = deviceConnected;
connectionLedTimer.detach();
digitalWrite(5, LOW);
}
}

View File

@ -1,285 +0,0 @@
"""
Websockets client for micropython
Based very heavily off
https://github.com/aaugustin/websockets/blob/master/websockets/client.py
"""
#import libraries
import ussl
import ure as re
import urandom as random
import ustruct as struct
import usocket as socket
import ubinascii as binascii
from ucollections import namedtuple
# Opcodes
OP_CONT = const(0x0)
OP_TEXT = const(0x1)
OP_BYTES = const(0x2)
OP_CLOSE = const(0x8)
OP_PING = const(0x9)
OP_PONG = const(0xa)
# Close codes
CLOSE_OK = const(1000)
CLOSE_GOING_AWAY = const(1001)
CLOSE_PROTOCOL_ERROR = const(1002)
CLOSE_DATA_NOT_SUPPORTED = const(1003)
CLOSE_BAD_DATA = const(1007)
CLOSE_POLICY_VIOLATION = const(1008)
CLOSE_TOO_BIG = const(1009)
CLOSE_MISSING_EXTN = const(1010)
CLOSE_BAD_CONDITION = const(1011)
URL_RE = re.compile(r'(wss|ws)://([A-Za-z0-9-\.]+)(?:\:([0-9]+))?(/.+)?')
URI = namedtuple('URI', ('protocol', 'hostname', 'port', 'path'))
class NoDataException(Exception):
pass
def urlparse(uri):
"""Parse ws:// URLs"""
match = URL_RE.match(uri)
if match:
protocol = match.group(1)
host = match.group(2)
port = match.group(3)
path = match.group(4)
if protocol == 'wss':
if port is None:
port = 443
elif protocol == 'ws':
if port is None:
port = 80
else:
raise ValueError('Scheme {} is invalid'.format(protocol))
return URI(protocol, host, int(port), path)
class Websocket:
"""
Basis of the Websocket protocol.
This can probably be replaced with the C-based websocket module, but
this one currently supports more options.
"""
is_client = False
def __init__(self, sock):
self.sock = sock
self.open = True
def __enter__(self):
return self
def __exit__(self, exc_type, exc, tb):
self.close()
def settimeout(self, timeout):
self.sock.settimeout(timeout)
def read_frame(self, max_size=None):
"""
Read a frame from the socket.
See https://tools.ietf.org/html/rfc6455#section-5.2 for the details.
"""
# Frame header
two_bytes = self.sock.read(2)
if not two_bytes:
raise NoDataException
byte1, byte2 = struct.unpack('!BB', two_bytes)
# Byte 1: FIN(1) _(1) _(1) _(1) OPCODE(4)
fin = bool(byte1 & 0x80)
opcode = byte1 & 0x0f
# Byte 2: MASK(1) LENGTH(7)
mask = bool(byte2 & (1 << 7))
length = byte2 & 0x7f
if length == 126: # Magic number, length header is 2 bytes
length, = struct.unpack('!H', self.sock.read(2))
elif length == 127: # Magic number, length header is 8 bytes
length, = struct.unpack('!Q', self.sock.read(8))
if mask: # Mask is 4 bytes
mask_bits = self.sock.read(4)
try:
data = self.sock.read(length)
except MemoryError:
# We can't receive this many bytes, close the socket
self.close(code=CLOSE_TOO_BIG)
return True, OP_CLOSE, None
if mask:
data = bytes(b ^ mask_bits[i % 4]
for i, b in enumerate(data))
return fin, opcode, data
def write_frame(self, opcode, data=b''):
"""
Write a frame to the socket.
See https://tools.ietf.org/html/rfc6455#section-5.2 for the details.
"""
fin = True
mask = self.is_client # messages sent by client are masked
length = len(data)
# Frame header
# Byte 1: FIN(1) _(1) _(1) _(1) OPCODE(4)
byte1 = 0x80 if fin else 0
byte1 |= opcode
# Byte 2: MASK(1) LENGTH(7)
byte2 = 0x80 if mask else 0
if length < 126: # 126 is magic value to use 2-byte length header
byte2 |= length
self.sock.write(struct.pack('!BB', byte1, byte2))
elif length < (1 << 16): # Length fits in 2-bytes
byte2 |= 126 # Magic code
self.sock.write(struct.pack('!BBH', byte1, byte2, length))
elif length < (1 << 64):
byte2 |= 127 # Magic code
self.sock.write(struct.pack('!BBQ', byte1, byte2, length))
else:
raise ValueError()
if mask: # Mask is 4 bytes
mask_bits = struct.pack('!I', random.getrandbits(32))
self.sock.write(mask_bits)
data = bytes(b ^ mask_bits[i % 4]
for i, b in enumerate(data))
self.sock.write(data)
def recv(self):
"""
Receive data from the websocket.
This is slightly different from 'websockets' in that it doesn't
fire off a routine to process frames and put the data in a queue.
If you don't call recv() sufficiently often you won't process control
frames.
"""
assert self.open
while self.open:
try:
fin, opcode, data = self.read_frame()
except NoDataException:
return ''
except ValueError:
self._close()
return
if not fin:
raise NotImplementedError()
if opcode == OP_TEXT:
return data
elif opcode == OP_BYTES:
return data
elif opcode == OP_CLOSE:
self._close()
return
elif opcode == OP_PONG:
# Ignore this frame, keep waiting for a data frame
continue
elif opcode == OP_PING:
# We need to send a pong frame
self.write_frame(OP_PONG, data)
# And then wait to receive
continue
elif opcode == OP_CONT:
# This is a continuation of a previous frame
raise NotImplementedError(opcode)
else:
raise ValueError(opcode)
def send(self, buf):
"""Send data to the websocket."""
assert self.open
if isinstance(buf, str):
opcode = OP_TEXT
buf = buf.encode('utf-8')
elif isinstance(buf, bytes):
opcode = OP_BYTES
else:
raise TypeError()
self.write_frame(opcode, buf)
def close(self, code=CLOSE_OK, reason=''):
"""Close the websocket."""
if not self.open:
return
buf = struct.pack('!H', code) + reason.encode('utf-8')
self.write_frame(OP_CLOSE, buf)
self._close()
def _close(self):
self.open = False
self.sock.close()
class WebsocketClient(Websocket):
is_client = True
def connect(uri):
"""
Connect a websocket.
"""
uri = urlparse(uri)
assert uri
sock = socket.socket()
addr = socket.getaddrinfo(uri.hostname, uri.port)
sock.connect(addr[0][4])
if uri.protocol == 'wss':
sock = ussl.wrap_socket(sock)
def send_header(header, *args):
sock.write(header % args + '\r\n')
# Sec-WebSocket-Key is 16 bytes of random base64 encoded
key = binascii.b2a_base64(bytes(random.getrandbits(8)
for _ in range(16)))[:-1]
send_header(b'GET %s HTTP/1.1', uri.path or '/')
send_header(b'Host: %s:%s', uri.hostname, uri.port)
send_header(b'Connection: Upgrade')
send_header(b'Upgrade: websocket')
send_header(b'Sec-WebSocket-Key: %s', key)
send_header(b'Sec-WebSocket-Version: 13')
send_header(b'Origin: http://localhost')
send_header(b'')
header = sock.readline()[:-2]
assert header.startswith(b'HTTP/1.1 101 '), header
# We don't (currently) need these headers
# FIXME: should we check the return key?
while header:
print("uwebsockets.py header:", header)
header = sock.readline()[:-2]
return WebsocketClient(sock)