255 lines
7.5 KiB
Go
255 lines
7.5 KiB
Go
package stats
|
||
|
||
import (
|
||
"math"
|
||
"math/rand"
|
||
"strings"
|
||
"time"
|
||
)
|
||
|
||
// NormPpfRvs generates random variates using the Point Percentile Function.
|
||
// For more information please visit: https://demonstrations.wolfram.com/TheMethodOfInverseTransforms/
|
||
func NormPpfRvs(loc float64, scale float64, size int) []float64 {
|
||
rand.Seed(time.Now().UnixNano())
|
||
var toReturn []float64
|
||
for i := 0; i < size; i++ {
|
||
toReturn = append(toReturn, NormPpf(rand.Float64(), loc, scale))
|
||
}
|
||
return toReturn
|
||
}
|
||
|
||
// NormBoxMullerRvs generates random variates using the Box–Muller transform.
|
||
// For more information please visit: http://mathworld.wolfram.com/Box-MullerTransformation.html
|
||
func NormBoxMullerRvs(loc float64, scale float64, size int) []float64 {
|
||
rand.Seed(time.Now().UnixNano())
|
||
var toReturn []float64
|
||
for i := 0; i < int(float64(size/2)+float64(size%2)); i++ {
|
||
// u1 and u2 are uniformly distributed random numbers between 0 and 1.
|
||
u1 := rand.Float64()
|
||
u2 := rand.Float64()
|
||
// x1 and x2 are normally distributed random numbers.
|
||
x1 := loc + (scale * (math.Sqrt(-2*math.Log(u1)) * math.Cos(2*math.Pi*u2)))
|
||
toReturn = append(toReturn, x1)
|
||
if (i+1)*2 <= size {
|
||
x2 := loc + (scale * (math.Sqrt(-2*math.Log(u1)) * math.Sin(2*math.Pi*u2)))
|
||
toReturn = append(toReturn, x2)
|
||
}
|
||
}
|
||
return toReturn
|
||
}
|
||
|
||
// NormPdf is the probability density function.
|
||
func NormPdf(x float64, loc float64, scale float64) float64 {
|
||
return (math.Pow(math.E, -(math.Pow(x-loc, 2))/(2*math.Pow(scale, 2)))) / (scale * math.Sqrt(2*math.Pi))
|
||
}
|
||
|
||
// NormLogPdf is the log of the probability density function.
|
||
func NormLogPdf(x float64, loc float64, scale float64) float64 {
|
||
return math.Log((math.Pow(math.E, -(math.Pow(x-loc, 2))/(2*math.Pow(scale, 2)))) / (scale * math.Sqrt(2*math.Pi)))
|
||
}
|
||
|
||
// NormCdf is the cumulative distribution function.
|
||
func NormCdf(x float64, loc float64, scale float64) float64 {
|
||
return 0.5 * (1 + math.Erf((x-loc)/(scale*math.Sqrt(2))))
|
||
}
|
||
|
||
// NormLogCdf is the log of the cumulative distribution function.
|
||
func NormLogCdf(x float64, loc float64, scale float64) float64 {
|
||
return math.Log(0.5 * (1 + math.Erf((x-loc)/(scale*math.Sqrt(2)))))
|
||
}
|
||
|
||
// NormSf is the survival function (also defined as 1 - cdf, but sf is sometimes more accurate).
|
||
func NormSf(x float64, loc float64, scale float64) float64 {
|
||
return 1 - 0.5*(1+math.Erf((x-loc)/(scale*math.Sqrt(2))))
|
||
}
|
||
|
||
// NormLogSf is the log of the survival function.
|
||
func NormLogSf(x float64, loc float64, scale float64) float64 {
|
||
return math.Log(1 - 0.5*(1+math.Erf((x-loc)/(scale*math.Sqrt(2)))))
|
||
}
|
||
|
||
// NormPpf is the point percentile function.
|
||
// This is based on Peter John Acklam's inverse normal CDF.
|
||
// algorithm: http://home.online.no/~pjacklam/notes/invnorm/ (no longer visible).
|
||
// For more information please visit: https://stackedboxes.org/2017/05/01/acklams-normal-quantile-function/
|
||
func NormPpf(p float64, loc float64, scale float64) (x float64) {
|
||
const (
|
||
a1 = -3.969683028665376e+01
|
||
a2 = 2.209460984245205e+02
|
||
a3 = -2.759285104469687e+02
|
||
a4 = 1.383577518672690e+02
|
||
a5 = -3.066479806614716e+01
|
||
a6 = 2.506628277459239e+00
|
||
|
||
b1 = -5.447609879822406e+01
|
||
b2 = 1.615858368580409e+02
|
||
b3 = -1.556989798598866e+02
|
||
b4 = 6.680131188771972e+01
|
||
b5 = -1.328068155288572e+01
|
||
|
||
c1 = -7.784894002430293e-03
|
||
c2 = -3.223964580411365e-01
|
||
c3 = -2.400758277161838e+00
|
||
c4 = -2.549732539343734e+00
|
||
c5 = 4.374664141464968e+00
|
||
c6 = 2.938163982698783e+00
|
||
|
||
d1 = 7.784695709041462e-03
|
||
d2 = 3.224671290700398e-01
|
||
d3 = 2.445134137142996e+00
|
||
d4 = 3.754408661907416e+00
|
||
|
||
plow = 0.02425
|
||
phigh = 1 - plow
|
||
)
|
||
|
||
if p < 0 || p > 1 {
|
||
return math.NaN()
|
||
} else if p == 0 {
|
||
return -math.Inf(0)
|
||
} else if p == 1 {
|
||
return math.Inf(0)
|
||
}
|
||
|
||
if p < plow {
|
||
q := math.Sqrt(-2 * math.Log(p))
|
||
x = (((((c1*q+c2)*q+c3)*q+c4)*q+c5)*q + c6) /
|
||
((((d1*q+d2)*q+d3)*q+d4)*q + 1)
|
||
} else if phigh < p {
|
||
q := math.Sqrt(-2 * math.Log(1-p))
|
||
x = -(((((c1*q+c2)*q+c3)*q+c4)*q+c5)*q + c6) /
|
||
((((d1*q+d2)*q+d3)*q+d4)*q + 1)
|
||
} else {
|
||
q := p - 0.5
|
||
r := q * q
|
||
x = (((((a1*r+a2)*r+a3)*r+a4)*r+a5)*r + a6) * q /
|
||
(((((b1*r+b2)*r+b3)*r+b4)*r+b5)*r + 1)
|
||
}
|
||
|
||
e := 0.5*math.Erfc(-x/math.Sqrt2) - p
|
||
u := e * math.Sqrt(2*math.Pi) * math.Exp(x*x/2)
|
||
x = x - u/(1+x*u/2)
|
||
|
||
return x*scale + loc
|
||
}
|
||
|
||
// NormIsf is the inverse survival function (inverse of sf).
|
||
func NormIsf(p float64, loc float64, scale float64) (x float64) {
|
||
if -NormPpf(p, loc, scale) == 0 {
|
||
return 0
|
||
}
|
||
return -NormPpf(p, loc, scale)
|
||
}
|
||
|
||
// NormMoment approximates the non-central (raw) moment of order n.
|
||
// For more information please visit: https://math.stackexchange.com/questions/1945448/methods-for-finding-raw-moments-of-the-normal-distribution
|
||
func NormMoment(n int, loc float64, scale float64) float64 {
|
||
toReturn := 0.0
|
||
for i := 0; i < n+1; i++ {
|
||
if (n-i)%2 == 0 {
|
||
toReturn += float64(Ncr(n, i)) * (math.Pow(loc, float64(i))) * (math.Pow(scale, float64(n-i))) *
|
||
(float64(factorial(n-i)) / ((math.Pow(2.0, float64((n-i)/2))) *
|
||
float64(factorial((n-i)/2))))
|
||
}
|
||
}
|
||
return toReturn
|
||
}
|
||
|
||
// NormStats returns the mean, variance, skew, and/or kurtosis.
|
||
// Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’).
|
||
// Takes string containing any of 'mvsk'.
|
||
// Returns array of m v s k in that order.
|
||
func NormStats(loc float64, scale float64, moments string) []float64 {
|
||
var toReturn []float64
|
||
if strings.ContainsAny(moments, "m") {
|
||
toReturn = append(toReturn, loc)
|
||
}
|
||
if strings.ContainsAny(moments, "v") {
|
||
toReturn = append(toReturn, math.Pow(scale, 2))
|
||
}
|
||
if strings.ContainsAny(moments, "s") {
|
||
toReturn = append(toReturn, 0.0)
|
||
}
|
||
if strings.ContainsAny(moments, "k") {
|
||
toReturn = append(toReturn, 0.0)
|
||
}
|
||
return toReturn
|
||
}
|
||
|
||
// NormEntropy is the differential entropy of the RV.
|
||
func NormEntropy(loc float64, scale float64) float64 {
|
||
return math.Log(scale * math.Sqrt(2*math.Pi*math.E))
|
||
}
|
||
|
||
// NormFit returns the maximum likelihood estimators for the Normal Distribution.
|
||
// Takes array of float64 values.
|
||
// Returns array of Mean followed by Standard Deviation.
|
||
func NormFit(data []float64) [2]float64 {
|
||
sum := 0.00
|
||
for i := 0; i < len(data); i++ {
|
||
sum += data[i]
|
||
}
|
||
mean := sum / float64(len(data))
|
||
stdNumerator := 0.00
|
||
for i := 0; i < len(data); i++ {
|
||
stdNumerator += math.Pow(data[i]-mean, 2)
|
||
}
|
||
return [2]float64{mean, math.Sqrt((stdNumerator) / (float64(len(data))))}
|
||
}
|
||
|
||
// NormMedian is the median of the distribution.
|
||
func NormMedian(loc float64, scale float64) float64 {
|
||
return loc
|
||
}
|
||
|
||
// NormMean is the mean/expected value of the distribution.
|
||
func NormMean(loc float64, scale float64) float64 {
|
||
return loc
|
||
}
|
||
|
||
// NormVar is the variance of the distribution.
|
||
func NormVar(loc float64, scale float64) float64 {
|
||
return math.Pow(scale, 2)
|
||
}
|
||
|
||
// NormStd is the standard deviation of the distribution.
|
||
func NormStd(loc float64, scale float64) float64 {
|
||
return scale
|
||
}
|
||
|
||
// NormInterval finds endpoints of the range that contains alpha percent of the distribution.
|
||
func NormInterval(alpha float64, loc float64, scale float64) [2]float64 {
|
||
q1 := (1.0 - alpha) / 2
|
||
q2 := (1.0 + alpha) / 2
|
||
a := NormPpf(q1, loc, scale)
|
||
b := NormPpf(q2, loc, scale)
|
||
return [2]float64{a, b}
|
||
}
|
||
|
||
// factorial is the naive factorial algorithm.
|
||
func factorial(x int) int {
|
||
if x == 0 {
|
||
return 1
|
||
}
|
||
return x * factorial(x-1)
|
||
}
|
||
|
||
// Ncr is an N choose R algorithm.
|
||
// Aaron Cannon's algorithm.
|
||
func Ncr(n, r int) int {
|
||
if n <= 1 || r == 0 || n == r {
|
||
return 1
|
||
}
|
||
if newR := n - r; newR < r {
|
||
r = newR
|
||
}
|
||
if r == 1 {
|
||
return n
|
||
}
|
||
ret := int(n - r + 1)
|
||
for i, j := ret+1, int(2); j <= r; i, j = i+1, j+1 {
|
||
ret = ret * i / j
|
||
}
|
||
return ret
|
||
}
|