package stats import ( "math" "math/rand" "strings" "time" ) // NormPpfRvs generates random variates using the Point Percentile Function. // For more information please visit: https://demonstrations.wolfram.com/TheMethodOfInverseTransforms/ func NormPpfRvs(loc float64, scale float64, size int) []float64 { rand.Seed(time.Now().UnixNano()) var toReturn []float64 for i := 0; i < size; i++ { toReturn = append(toReturn, NormPpf(rand.Float64(), loc, scale)) } return toReturn } // NormBoxMullerRvs generates random variates using the Box–Muller transform. // For more information please visit: http://mathworld.wolfram.com/Box-MullerTransformation.html func NormBoxMullerRvs(loc float64, scale float64, size int) []float64 { rand.Seed(time.Now().UnixNano()) var toReturn []float64 for i := 0; i < int(float64(size/2)+float64(size%2)); i++ { // u1 and u2 are uniformly distributed random numbers between 0 and 1. u1 := rand.Float64() u2 := rand.Float64() // x1 and x2 are normally distributed random numbers. x1 := loc + (scale * (math.Sqrt(-2*math.Log(u1)) * math.Cos(2*math.Pi*u2))) toReturn = append(toReturn, x1) if (i+1)*2 <= size { x2 := loc + (scale * (math.Sqrt(-2*math.Log(u1)) * math.Sin(2*math.Pi*u2))) toReturn = append(toReturn, x2) } } return toReturn } // NormPdf is the probability density function. func NormPdf(x float64, loc float64, scale float64) float64 { return (math.Pow(math.E, -(math.Pow(x-loc, 2))/(2*math.Pow(scale, 2)))) / (scale * math.Sqrt(2*math.Pi)) } // NormLogPdf is the log of the probability density function. func NormLogPdf(x float64, loc float64, scale float64) float64 { return math.Log((math.Pow(math.E, -(math.Pow(x-loc, 2))/(2*math.Pow(scale, 2)))) / (scale * math.Sqrt(2*math.Pi))) } // NormCdf is the cumulative distribution function. func NormCdf(x float64, loc float64, scale float64) float64 { return 0.5 * (1 + math.Erf((x-loc)/(scale*math.Sqrt(2)))) } // NormLogCdf is the log of the cumulative distribution function. func NormLogCdf(x float64, loc float64, scale float64) float64 { return math.Log(0.5 * (1 + math.Erf((x-loc)/(scale*math.Sqrt(2))))) } // NormSf is the survival function (also defined as 1 - cdf, but sf is sometimes more accurate). func NormSf(x float64, loc float64, scale float64) float64 { return 1 - 0.5*(1+math.Erf((x-loc)/(scale*math.Sqrt(2)))) } // NormLogSf is the log of the survival function. func NormLogSf(x float64, loc float64, scale float64) float64 { return math.Log(1 - 0.5*(1+math.Erf((x-loc)/(scale*math.Sqrt(2))))) } // NormPpf is the point percentile function. // This is based on Peter John Acklam's inverse normal CDF. // algorithm: http://home.online.no/~pjacklam/notes/invnorm/ (no longer visible). // For more information please visit: https://stackedboxes.org/2017/05/01/acklams-normal-quantile-function/ func NormPpf(p float64, loc float64, scale float64) (x float64) { const ( a1 = -3.969683028665376e+01 a2 = 2.209460984245205e+02 a3 = -2.759285104469687e+02 a4 = 1.383577518672690e+02 a5 = -3.066479806614716e+01 a6 = 2.506628277459239e+00 b1 = -5.447609879822406e+01 b2 = 1.615858368580409e+02 b3 = -1.556989798598866e+02 b4 = 6.680131188771972e+01 b5 = -1.328068155288572e+01 c1 = -7.784894002430293e-03 c2 = -3.223964580411365e-01 c3 = -2.400758277161838e+00 c4 = -2.549732539343734e+00 c5 = 4.374664141464968e+00 c6 = 2.938163982698783e+00 d1 = 7.784695709041462e-03 d2 = 3.224671290700398e-01 d3 = 2.445134137142996e+00 d4 = 3.754408661907416e+00 plow = 0.02425 phigh = 1 - plow ) if p < 0 || p > 1 { return math.NaN() } else if p == 0 { return -math.Inf(0) } else if p == 1 { return math.Inf(0) } if p < plow { q := math.Sqrt(-2 * math.Log(p)) x = (((((c1*q+c2)*q+c3)*q+c4)*q+c5)*q + c6) / ((((d1*q+d2)*q+d3)*q+d4)*q + 1) } else if phigh < p { q := math.Sqrt(-2 * math.Log(1-p)) x = -(((((c1*q+c2)*q+c3)*q+c4)*q+c5)*q + c6) / ((((d1*q+d2)*q+d3)*q+d4)*q + 1) } else { q := p - 0.5 r := q * q x = (((((a1*r+a2)*r+a3)*r+a4)*r+a5)*r + a6) * q / (((((b1*r+b2)*r+b3)*r+b4)*r+b5)*r + 1) } e := 0.5*math.Erfc(-x/math.Sqrt2) - p u := e * math.Sqrt(2*math.Pi) * math.Exp(x*x/2) x = x - u/(1+x*u/2) return x*scale + loc } // NormIsf is the inverse survival function (inverse of sf). func NormIsf(p float64, loc float64, scale float64) (x float64) { if -NormPpf(p, loc, scale) == 0 { return 0 } return -NormPpf(p, loc, scale) } // NormMoment approximates the non-central (raw) moment of order n. // For more information please visit: https://math.stackexchange.com/questions/1945448/methods-for-finding-raw-moments-of-the-normal-distribution func NormMoment(n int, loc float64, scale float64) float64 { toReturn := 0.0 for i := 0; i < n+1; i++ { if (n-i)%2 == 0 { toReturn += float64(Ncr(n, i)) * (math.Pow(loc, float64(i))) * (math.Pow(scale, float64(n-i))) * (float64(factorial(n-i)) / ((math.Pow(2.0, float64((n-i)/2))) * float64(factorial((n-i)/2)))) } } return toReturn } // NormStats returns the mean, variance, skew, and/or kurtosis. // Mean(‘m’), variance(‘v’), skew(‘s’), and/or kurtosis(‘k’). // Takes string containing any of 'mvsk'. // Returns array of m v s k in that order. func NormStats(loc float64, scale float64, moments string) []float64 { var toReturn []float64 if strings.ContainsAny(moments, "m") { toReturn = append(toReturn, loc) } if strings.ContainsAny(moments, "v") { toReturn = append(toReturn, math.Pow(scale, 2)) } if strings.ContainsAny(moments, "s") { toReturn = append(toReturn, 0.0) } if strings.ContainsAny(moments, "k") { toReturn = append(toReturn, 0.0) } return toReturn } // NormEntropy is the differential entropy of the RV. func NormEntropy(loc float64, scale float64) float64 { return math.Log(scale * math.Sqrt(2*math.Pi*math.E)) } // NormFit returns the maximum likelihood estimators for the Normal Distribution. // Takes array of float64 values. // Returns array of Mean followed by Standard Deviation. func NormFit(data []float64) [2]float64 { sum := 0.00 for i := 0; i < len(data); i++ { sum += data[i] } mean := sum / float64(len(data)) stdNumerator := 0.00 for i := 0; i < len(data); i++ { stdNumerator += math.Pow(data[i]-mean, 2) } return [2]float64{mean, math.Sqrt((stdNumerator) / (float64(len(data))))} } // NormMedian is the median of the distribution. func NormMedian(loc float64, scale float64) float64 { return loc } // NormMean is the mean/expected value of the distribution. func NormMean(loc float64, scale float64) float64 { return loc } // NormVar is the variance of the distribution. func NormVar(loc float64, scale float64) float64 { return math.Pow(scale, 2) } // NormStd is the standard deviation of the distribution. func NormStd(loc float64, scale float64) float64 { return scale } // NormInterval finds endpoints of the range that contains alpha percent of the distribution. func NormInterval(alpha float64, loc float64, scale float64) [2]float64 { q1 := (1.0 - alpha) / 2 q2 := (1.0 + alpha) / 2 a := NormPpf(q1, loc, scale) b := NormPpf(q2, loc, scale) return [2]float64{a, b} } // factorial is the naive factorial algorithm. func factorial(x int) int { if x == 0 { return 1 } return x * factorial(x-1) } // Ncr is an N choose R algorithm. // Aaron Cannon's algorithm. func Ncr(n, r int) int { if n <= 1 || r == 0 || n == r { return 1 } if newR := n - r; newR < r { r = newR } if r == 1 { return n } ret := int(n - r + 1) for i, j := ret+1, int(2); j <= r; i, j = i+1, j+1 { ret = ret * i / j } return ret }