Compare commits
6 Commits
Author | SHA1 | Date | |
---|---|---|---|
0653c4b13c | |||
73e519e3c2 | |||
077bdcffd4 | |||
3f28718d4e | |||
b7cb6a87b5 | |||
0234af98b3 |
21
.drone.yml
Normal file
21
.drone.yml
Normal file
@ -0,0 +1,21 @@
|
||||
---
|
||||
kind: pipeline
|
||||
type: kubernetes
|
||||
name: default
|
||||
|
||||
steps:
|
||||
- name: lint
|
||||
image: python
|
||||
commands:
|
||||
- pip install pre_commit
|
||||
- pre-commit run --all-files
|
||||
- name: docker
|
||||
image: plugins/docker
|
||||
settings:
|
||||
repo: harbor.k-space.ee/${DRONE_REPO}
|
||||
registry: harbor.k-space.ee
|
||||
mtu: 1300
|
||||
username:
|
||||
from_secret: docker_username
|
||||
password:
|
||||
from_secret: docker_password
|
1
.gitignore
vendored
1
.gitignore
vendored
@ -1,2 +1 @@
|
||||
.env
|
||||
*.save
|
||||
|
4
.gitmodules
vendored
4
.gitmodules
vendored
@ -1,4 +0,0 @@
|
||||
[submodule "log-viewer"]
|
||||
path = log-viewer
|
||||
url = https://git.k-space.ee/k-space/log-viewer.git
|
||||
branch = wip
|
@ -1,26 +0,0 @@
|
||||
---
|
||||
matrix:
|
||||
ARCH:
|
||||
- amd64
|
||||
- arm64
|
||||
|
||||
steps:
|
||||
- name: build
|
||||
image: woodpeckerci/plugin-kaniko
|
||||
backend_options:
|
||||
kubernetes:
|
||||
nodeSelector:
|
||||
kubernetes.io/arch: ${ARCH}
|
||||
tolerations:
|
||||
- key: arch
|
||||
operator: Equal
|
||||
value: ${ARCH}
|
||||
effect: 'NoSchedule'
|
||||
settings:
|
||||
repo: ${CI_REPO}
|
||||
registry: harbor.k-space.ee
|
||||
tags: latest-${ARCH}
|
||||
username:
|
||||
from_secret: docker_username
|
||||
password:
|
||||
from_secret: docker_password
|
@ -1,31 +0,0 @@
|
||||
---
|
||||
skip_clone: true
|
||||
|
||||
steps:
|
||||
- name: manifest
|
||||
image: mirror.gcr.io/mplatform/manifest-tool:alpine-v2.1.6
|
||||
secrets:
|
||||
- docker_username
|
||||
- docker_password
|
||||
commands:
|
||||
- set -u
|
||||
- ls -lash
|
||||
- env
|
||||
- |
|
||||
cat << EOF > spec.yaml
|
||||
image: "harbor.k-space.ee/${CI_REPO}:latest"
|
||||
manifests:
|
||||
- image: "harbor.k-space.ee/${CI_REPO}:latest-amd64"
|
||||
platform:
|
||||
architecture: amd64
|
||||
os: linux
|
||||
- image: "harbor.k-space.ee/${CI_REPO}:latest-arm64"
|
||||
platform:
|
||||
architecture: arm64
|
||||
os: linux
|
||||
EOF
|
||||
- /manifest-tool --username $docker_username --password $docker_password push from-spec spec.yaml > stdout
|
||||
- cat stdout
|
||||
|
||||
depends_on:
|
||||
- build
|
30
Dockerfile
30
Dockerfile
@ -1,31 +1,21 @@
|
||||
FROM mirror.gcr.io/library/ubuntu:focal
|
||||
FROM ubuntu
|
||||
WORKDIR /app
|
||||
ENV DEBIAN_FRONTEND=noninteractive
|
||||
RUN apt-get update \
|
||||
&& apt-get install --no-install-recommends -y \
|
||||
build-essential \
|
||||
RUN apt-get update && apt-get install -y \
|
||||
gstreamer1.0-libav \
|
||||
gstreamer1.0-plugins-bad \
|
||||
gstreamer1.0-plugins-base \
|
||||
gstreamer1.0-plugins-good \
|
||||
gstreamer1.0-plugins-ugly \
|
||||
gstreamer1.0-tools \
|
||||
libjpeg-dev \
|
||||
libpython3-dev \
|
||||
python3-gevent \
|
||||
python3-numpy \
|
||||
python3-opencv \
|
||||
python3-flask \
|
||||
python3-pip \
|
||||
git \
|
||||
&& pip3 install \
|
||||
aioboto3 \
|
||||
aiohttp \
|
||||
jpeg2dct \
|
||||
motor \
|
||||
prometheus_client \
|
||||
sanic==21.6.2 \
|
||||
sanic-json-logging \
|
||||
git+https://github.com/Assarius/sanic-prometheus@Sanic_22 \
|
||||
&& apt-get remove -y \
|
||||
build-essential \
|
||||
libjpeg-dev \
|
||||
libpython3-dev \
|
||||
&& apt-get autoremove -y \
|
||||
&& apt-get clean
|
||||
RUN pip3 install boto3 prometheus_client pymongo==3.12.2 aiohttp jpeg2dct sanic==21.6.2 sanic_prometheus motor
|
||||
COPY camdetect.py /app
|
||||
ENTRYPOINT /app/camdetect.py
|
||||
EXPOSE 5000
|
||||
|
24
README.md
24
README.md
@ -8,26 +8,8 @@ In a nutshell:
|
||||
- It brings the MJPEG stream into the cluster
|
||||
- Performs highly optimal JPEG DCT coefficient based motion detection
|
||||
without actually decoding the JPEG frame to a bitmap
|
||||
- Writes events to MongoDB
|
||||
- Generates thumbnails based on JPEG DCT coefficents
|
||||
- Uploads screenshots and corresponding thumbnails to S3
|
||||
- WIP: Writes events to MongoDB
|
||||
- WIP: Uploads screenshots to S3
|
||||
- Exposes endpoint for distributing MJPEG stream inside the cluster,
|
||||
eg for the `camera-tiler`
|
||||
eg by the `camera-tiler`
|
||||
- Exposes endpoint for inspecting DCT blocks where motion has been detected
|
||||
|
||||
# Developing
|
||||
|
||||
Bundled `docker-compose.yml` brings up:
|
||||
|
||||
* [camdetect bypass stream](http://localhost:5000/bypass)
|
||||
* [camdetect debug](http://localhost:5000/debug)
|
||||
* [Minio](http://localhost:9001/buckets/camdetect/browse)
|
||||
* [Mongoexpress](http://localhost:8081/db/default/eventlog)
|
||||
* [Prometheus](http://localhost:9090/graph)
|
||||
* [mjpeg-streamer](http://user:123456@localhost:8080/?action=stream)
|
||||
|
||||
To manually trigger event:
|
||||
|
||||
```
|
||||
docker kill -sUSR1 camera-motion-detect_camdetect_1
|
||||
```
|
||||
|
616
camdetect.py
616
camdetect.py
@ -1,390 +1,86 @@
|
||||
#!/usr/bin/env python3
|
||||
import aioboto3
|
||||
import aiohttp
|
||||
import asyncio
|
||||
import cv2
|
||||
import hashlib
|
||||
import io
|
||||
import json
|
||||
import numpy as np
|
||||
import os
|
||||
import pymongo
|
||||
import signal
|
||||
import json
|
||||
import socket
|
||||
import sys
|
||||
import botocore.exceptions
|
||||
from datetime import datetime, timedelta
|
||||
from datetime import datetime
|
||||
from jpeg2dct.numpy import loads
|
||||
from math import inf
|
||||
from motor.motor_asyncio import AsyncIOMotorClient
|
||||
from prometheus_client import Counter, Gauge, Histogram
|
||||
from pymongo import ReturnDocument
|
||||
from prometheus_client import Counter, Gauge
|
||||
from sanic import Sanic, response
|
||||
from sanic_json_logging import setup_json_logging
|
||||
from sanic.log import logger
|
||||
from sanic_prometheus import monitor
|
||||
from sanic.response import stream
|
||||
from sanic_prometheus import monitor
|
||||
from time import time
|
||||
from urllib.parse import urlparse
|
||||
|
||||
_, target = sys.argv
|
||||
_, url = sys.argv
|
||||
|
||||
# Override basic auth password from env var
|
||||
basic_auth_password = os.getenv("BASIC_AUTH_PASSWORD")
|
||||
if basic_auth_password:
|
||||
o = urlparse(target)
|
||||
netloc = o.netloc
|
||||
username = ""
|
||||
if "@" in netloc:
|
||||
username, netloc = o.netloc.split("@", 1)
|
||||
if ":" in username:
|
||||
username, _ = username.split(":")
|
||||
target = o._replace(netloc="%s:%s@%s" % (username, basic_auth_password, netloc)).geturl()
|
||||
|
||||
AWS_ACCESS_KEY_ID = os.environ["AWS_ACCESS_KEY_ID"]
|
||||
AWS_SECRET_ACCESS_KEY = os.environ["AWS_SECRET_ACCESS_KEY"]
|
||||
|
||||
S3_ENDPOINT_URL = os.environ["S3_ENDPOINT_URL"]
|
||||
S3_BUCKET_NAME = os.getenv("S3_BUCKET_NAME", "camdetect")
|
||||
MONGO_URI = os.getenv("MONGO_URI", "mongodb://127.0.0.1:27017/default")
|
||||
MONGO_COLLECTION = os.getenv("MONGO_COLLECTION", "eventlog")
|
||||
SOURCE_NAME = os.environ["SOURCE_NAME"]
|
||||
SLIDE_WINDOW = 4
|
||||
FQDN = socket.getfqdn()
|
||||
SLIDE_WINDOW = 2
|
||||
DCT_BLOCK_SIZE = 8
|
||||
UPLOAD_FRAMESKIP = 3
|
||||
CLOCK_SKEW_TOLERANCE = timedelta(seconds=3)
|
||||
|
||||
# Percentage of blocks active to consider movement in whole frame
|
||||
THRESHOLD_RATIO = int(os.getenv("THRESHOLD_RATIO", "5"))
|
||||
|
||||
# Days to keep events
|
||||
TTL_DAYS = int(os.getenv("TTL_DAYS", "3"))
|
||||
|
||||
# How many blocks have changes to consider movement in frame
|
||||
THRESHOLD_BLOCKS = 20
|
||||
THRESHOLD_MOTION_START = 2
|
||||
CHUNK_BOUNDARY = b"\n--frame\nContent-Type: image/jpeg\n\n"
|
||||
|
||||
hist_active_blocks_ratio = Histogram(
|
||||
"camtiler_active_blocks_ratio",
|
||||
"Ratio of active DCT blocks",
|
||||
["roi"],
|
||||
buckets=(0.01, 0.02, 0.05, 0.1, 0.5, inf))
|
||||
hist_processing_latency = Histogram(
|
||||
"camtiler_frame_processing_latency_seconds",
|
||||
"Frame processing latency",
|
||||
buckets=(0.01, 0.05, 0.1, 0.5, 1, inf))
|
||||
hist_upload_latency = Histogram(
|
||||
"camtiler_frame_upload_latency_seconds",
|
||||
"Frame processing latency",
|
||||
buckets=(0.1, 0.5, 1, 5, 10, inf))
|
||||
counter_events = Counter(
|
||||
"camtiler_events",
|
||||
"Count of successfully processed events")
|
||||
counter_frames = Counter(
|
||||
"camtiler_frames",
|
||||
"Count of frames",
|
||||
["stage"])
|
||||
counter_dropped_frames = Counter(
|
||||
"camtiler_dropped_frames",
|
||||
"Frames that were dropped due to one of queues being full",
|
||||
["stage"])
|
||||
counter_discarded_bytes = Counter(
|
||||
"camtiler_discarded_bytes",
|
||||
counter_dropped_bytes = Counter(
|
||||
"camdetect_dropped_bytes",
|
||||
"Bytes that were not not handled or part of actual JPEG frames")
|
||||
counter_receive_bytes = Counter(
|
||||
"counter_receive_bytes",
|
||||
counter_rx_bytes = Counter(
|
||||
"camdetect_rx_bytes",
|
||||
"Bytes received over HTTP stream")
|
||||
counter_transmit_bytes = Counter(
|
||||
"camtiler_transmit_bytes",
|
||||
counter_tx_bytes = Counter(
|
||||
"camdetect_tx_bytes",
|
||||
"Bytes transmitted over HTTP streams")
|
||||
counter_receive_frames = Counter(
|
||||
"camtiler_receive_frames",
|
||||
"Frames received from upstream")
|
||||
counter_transmit_frames = Counter(
|
||||
"camtiler_transmit_frames",
|
||||
"Frames transmitted to downstream consumers")
|
||||
counter_emitted_events = Counter(
|
||||
"camtiler_emitted_events",
|
||||
counter_rx_frames = Counter(
|
||||
"camdetect_rx_frames",
|
||||
"Frames received")
|
||||
counter_tx_frames = Counter(
|
||||
"camdetect_tx_frames",
|
||||
"Frames transmitted")
|
||||
counter_tx_events = Counter(
|
||||
"camdetect_tx_events",
|
||||
"Events emitted")
|
||||
counter_receive_chunks = Counter(
|
||||
"camtiler_receive_chunks",
|
||||
counter_rx_chunks = Counter(
|
||||
"camdetect_rx_chunks",
|
||||
"HTTP chunks received")
|
||||
counter_errors = Counter(
|
||||
"camtiler_errors",
|
||||
"camdetect_errors",
|
||||
"Upstream connection errors",
|
||||
["stage", "exception"])
|
||||
["exception"])
|
||||
counter_movement_frames = Counter(
|
||||
"camdetect_movement_frames",
|
||||
"Frames with movement detected in them")
|
||||
gauge_last_frame = Gauge(
|
||||
"camtiler_last_frame_timestamp_seconds",
|
||||
"Timestamp of last frame",
|
||||
["stage"])
|
||||
gauge_queue_frames = Gauge(
|
||||
"camtiler_queue_frames",
|
||||
"Numer of frames in a queue",
|
||||
["stage"])
|
||||
gauge_build_info = Gauge(
|
||||
"docker_build_info",
|
||||
"Build info",
|
||||
["git_commit", "git_commit_timestamp"])
|
||||
|
||||
gauge_build_info.labels(
|
||||
os.getenv("GIT_COMMIT", "null"),
|
||||
os.getenv("GIT_COMMIT_TIMESTAMP", "null")).set(1)
|
||||
|
||||
# Reset some gauges
|
||||
gauge_queue_frames.labels("download").set(0)
|
||||
gauge_queue_frames.labels("hold").set(0)
|
||||
gauge_queue_frames.labels("upload").set(0)
|
||||
counter_frames.labels("motion").inc(0)
|
||||
counter_frames.labels("downloaded").inc(0)
|
||||
|
||||
assert SLIDE_WINDOW <= 8 # This is 256 frames which should be enough
|
||||
"camdetect_last_frame",
|
||||
"Timestamp of last frame")
|
||||
gauge_total_blocks = Gauge(
|
||||
"camdetect_total_blocks",
|
||||
"Total DCT blocks")
|
||||
gauge_active_blocks = Gauge(
|
||||
"camdetect_active_blocks",
|
||||
"Total active, threshold exceeding DCT blocks")
|
||||
|
||||
|
||||
async def upload(bucket, blob: bytes, thumb: bytes, event_id):
|
||||
"""
|
||||
Upload single frame to S3 bucket
|
||||
"""
|
||||
|
||||
# Generate S3 path based on the JPEG blob SHA512 digest
|
||||
fp = hashlib.sha512(blob).hexdigest()
|
||||
path = "%s/%s.jpg" % (fp[:4], fp[4:])
|
||||
|
||||
try:
|
||||
await bucket.upload_fileobj(io.BytesIO(thumb), "thumb/%s" % path)
|
||||
await bucket.upload_fileobj(io.BytesIO(blob), path)
|
||||
except (botocore.exceptions.ClientError, botocore.exceptions.BotoCoreError) as e:
|
||||
j = "%s.%s" % (e.__class__.__module__, e.__class__.__name__)
|
||||
counter_errors.labels("upload", j).inc()
|
||||
|
||||
# Add screenshot path to the event
|
||||
app.ctx.coll.update_one({
|
||||
"_id": event_id
|
||||
}, {
|
||||
"$addToSet": {
|
||||
"screenshots": path,
|
||||
}
|
||||
})
|
||||
|
||||
counter_frames.labels("stored").inc()
|
||||
now = datetime.utcnow()
|
||||
gauge_last_frame.labels("upload").set(now.timestamp())
|
||||
# TODO: Handle 16MB maximum document size
|
||||
class Frame(object):
|
||||
def __init__(self, blob):
|
||||
self.blob = blob
|
||||
self.y, self.cb, self.cr = loads(blob)
|
||||
self.mask = np.int16(self.y[:, :, 0])
|
||||
|
||||
|
||||
async def uploader(queue):
|
||||
"""
|
||||
Uploader task grabs JPEG blobs from upload queue and uploads them to S3
|
||||
"""
|
||||
session = aioboto3.Session()
|
||||
async with session.resource("s3",
|
||||
aws_access_key_id=AWS_ACCESS_KEY_ID,
|
||||
aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
|
||||
endpoint_url=S3_ENDPOINT_URL) as s3:
|
||||
bucket = await s3.Bucket(S3_BUCKET_NAME)
|
||||
while True:
|
||||
dt, blob, thumb, event_id = await queue.get()
|
||||
gauge_queue_frames.labels("upload").set(queue.qsize())
|
||||
await upload(bucket, blob, thumb, event_id)
|
||||
counter_frames.labels("uploaded").inc()
|
||||
hist_upload_latency.observe(
|
||||
(datetime.utcnow() - dt).total_seconds())
|
||||
|
||||
|
||||
class ReferenceFrame():
|
||||
"""
|
||||
ReferenceFrame keeps last 2 ^ size frames to infer the background scene
|
||||
compared to which motion is detected
|
||||
|
||||
This is pretty much what background subtractor does in OpenCV,
|
||||
only difference is that we want have better performance instead of
|
||||
accuracy
|
||||
"""
|
||||
class NotEnoughFrames(Exception):
|
||||
pass
|
||||
|
||||
def __init__(self, size=SLIDE_WINDOW):
|
||||
self.y = []
|
||||
self.cumulative = None
|
||||
self.size = size
|
||||
|
||||
def put(self, y):
|
||||
if self.cumulative is None:
|
||||
self.cumulative = np.copy(y)
|
||||
else:
|
||||
self.cumulative += y
|
||||
self.y.append(y)
|
||||
if len(self.y) > 2 ** self.size:
|
||||
self.cumulative -= self.y[0]
|
||||
self.y = self.y[1:]
|
||||
|
||||
def get(self):
|
||||
if len(self.y) == 2 ** self.size:
|
||||
return self.cumulative >> SLIDE_WINDOW
|
||||
else:
|
||||
raise self.NotEnoughFrames()
|
||||
|
||||
|
||||
async def motion_detector(reference_frame, download_queue, upload_queue):
|
||||
"""
|
||||
Motion detector grabs JPEG blobs and Y channel coefficients
|
||||
from download queue, performs motion detection and pushes relevant
|
||||
JPEG blobs to upload queue going to S3
|
||||
"""
|
||||
event_id = None
|
||||
differing_blocks = []
|
||||
uploads_skipped = 0
|
||||
|
||||
# Hold queue keeps frames that we have before motion event start timestamp
|
||||
hold_queue = asyncio.Queue(2 ** SLIDE_WINDOW)
|
||||
|
||||
while True:
|
||||
dt, blob, dct, thumb = await download_queue.get()
|
||||
gauge_queue_frames.labels("download").set(download_queue.qsize())
|
||||
app.ctx.last_frame, app.ctx.dct = blob, dct
|
||||
|
||||
# Signal /bypass and /debug handlers about new frame
|
||||
app.ctx.event_frame.set()
|
||||
app.ctx.event_frame.clear()
|
||||
|
||||
# Separate most significant luma value for each DCT (8x8 pixel) block
|
||||
y = np.int16(dct[0][:, :, 0])
|
||||
|
||||
reference_frame.put(y)
|
||||
try:
|
||||
app.ctx.mask = cv2.inRange(cv2.absdiff(y,
|
||||
reference_frame.get()), 50, 65535)
|
||||
except ReferenceFrame.NotEnoughFrames:
|
||||
app.ctx.mask = None
|
||||
motion_detected = False
|
||||
else:
|
||||
# Implement dumb Kalman filter
|
||||
active_blocks = np.count_nonzero(app.ctx.mask)
|
||||
differing_blocks.append(active_blocks)
|
||||
differing_blocks[:] = differing_blocks[-10:]
|
||||
total_blocks = app.ctx.mask.shape[0] * app.ctx.mask.shape[1]
|
||||
threshold_blocks = THRESHOLD_RATIO * total_blocks / 100
|
||||
average_blocks = sum(differing_blocks) / len(differing_blocks)
|
||||
hist_active_blocks_ratio.labels("main").observe(active_blocks / total_blocks)
|
||||
motion_detected = average_blocks > threshold_blocks
|
||||
|
||||
now = datetime.utcnow()
|
||||
gauge_last_frame.labels("processed").set(now.timestamp())
|
||||
hist_processing_latency.observe((now - dt).total_seconds())
|
||||
|
||||
# Propagate SIGUSR1 signal handler
|
||||
if app.ctx.manual_trigger:
|
||||
logger.info("Manually triggering event via SIGUSR1")
|
||||
motion_detected = True
|
||||
app.ctx.manual_trigger = False
|
||||
|
||||
# Handle event start
|
||||
if motion_detected and not event_id:
|
||||
result = await app.ctx.coll.find_one_and_update({
|
||||
"@timestamp": {
|
||||
"$lte": dt + CLOCK_SKEW_TOLERANCE,
|
||||
"$gte": dt - CLOCK_SKEW_TOLERANCE,
|
||||
},
|
||||
"source": SOURCE_NAME,
|
||||
}, {
|
||||
"$setOnInsert": {
|
||||
"@timestamp": dt,
|
||||
"source": SOURCE_NAME,
|
||||
"event": "motion-detected",
|
||||
"started": dt,
|
||||
"finished": dt + timedelta(minutes=2),
|
||||
"component": "camdetect",
|
||||
"screenshots": [],
|
||||
"action": "event",
|
||||
}
|
||||
}, upsert=True, return_document=ReturnDocument.AFTER)
|
||||
app.ctx.event_id = event_id = result["_id"]
|
||||
|
||||
# Handle buffering frames prior event start
|
||||
if hold_queue.full():
|
||||
await hold_queue.get()
|
||||
hold_queue.put_nowait((blob, thumb))
|
||||
gauge_queue_frames.labels("hold").set(hold_queue.qsize())
|
||||
|
||||
# Handle image upload
|
||||
if motion_detected and event_id:
|
||||
counter_frames.labels("motion").inc()
|
||||
while True:
|
||||
if not uploads_skipped:
|
||||
uploads_skipped = UPLOAD_FRAMESKIP
|
||||
else:
|
||||
uploads_skipped -= 1
|
||||
continue
|
||||
|
||||
# Drain queue of frames prior event start
|
||||
try:
|
||||
blob, thumb = hold_queue.get_nowait()
|
||||
except asyncio.QueueEmpty:
|
||||
break
|
||||
|
||||
try:
|
||||
# Push JPEG blob into upload queue
|
||||
upload_queue.put_nowait((dt, blob, thumb, event_id))
|
||||
except asyncio.QueueFull:
|
||||
counter_dropped_frames.labels("upload").inc()
|
||||
gauge_queue_frames.labels("upload").set(upload_queue.qsize())
|
||||
|
||||
# Handle event end
|
||||
if not motion_detected and event_id:
|
||||
app.ctx.coll.update_one({
|
||||
"_id": event_id
|
||||
}, {
|
||||
"$set": {
|
||||
"finished": dt,
|
||||
}
|
||||
})
|
||||
app.ctx.event_id = event_id = None
|
||||
counter_events.inc()
|
||||
|
||||
|
||||
def generate_thumbnail(dct):
|
||||
"""
|
||||
This is highly efficient and highly inaccurate function to generate
|
||||
thumbnail based purely on JPEG coefficients
|
||||
"""
|
||||
y, cr, cb = dct
|
||||
|
||||
# Determine aspect ratio and minimum dimension for cropping
|
||||
ar = y.shape[0] < y.shape[1]
|
||||
dm = (y.shape[0] if ar else y.shape[1]) & 0xfffffff8
|
||||
|
||||
# Determine cropping slices to make it square
|
||||
jl = ((y.shape[1] >> 1) - (dm >> 1) if ar else 0)
|
||||
jt = (0 if ar else (y.shape[0] >> 1) - (dm >> 1))
|
||||
jr = jl + dm
|
||||
jb = jt + dm
|
||||
|
||||
# Do the actual crop
|
||||
ty = y[jt:jb, jl:jr, 0]
|
||||
tb = cb[jt >> 1:jb >> 1, jl >> 1:jr >> 1, 0]
|
||||
tr = cr[jt >> 1:jb >> 1, jl >> 1:jr >> 1, 0]
|
||||
|
||||
# Upsample chroma, dummy convert first coeff and stack all channels
|
||||
m = np.dstack((
|
||||
np.array((ty >> 3) + 127, dtype=np.uint8),
|
||||
np.array(
|
||||
(tb.repeat(2, 1).repeat(2, 0) >> 3) + 127, dtype=np.uint8)[:dm],
|
||||
np.array(
|
||||
(tr.repeat(2, 1).repeat(2, 0) >> 3) + 127, dtype=np.uint8)[:dm]))
|
||||
_, jpeg = cv2.imencode(".jpg",
|
||||
cv2.cvtColor(m, cv2.COLOR_YCrCb2BGR),
|
||||
(cv2.IMWRITE_JPEG_QUALITY, 80))
|
||||
return jpeg
|
||||
|
||||
|
||||
async def download(resp, queue):
|
||||
"""
|
||||
This coroutine iterates over HTTP connection chunks
|
||||
assembling the original JPEG blobs and decodes the
|
||||
DCT coefficients of the frames
|
||||
"""
|
||||
async def client_connect(resp):
|
||||
buf = b""
|
||||
logger.info("Upstream connection opened with status: %d", resp.status)
|
||||
print("Upstream connection opened with status:", resp.status)
|
||||
async for data, end_of_http_chunk in resp.content.iter_chunks():
|
||||
counter_receive_bytes.inc(len(data))
|
||||
counter_rx_bytes.inc(len(data))
|
||||
if end_of_http_chunk:
|
||||
counter_receive_chunks.inc()
|
||||
counter_rx_chunks.inc()
|
||||
|
||||
if buf:
|
||||
# seek end
|
||||
marker = data.find(b"\xff\xd9")
|
||||
@ -392,82 +88,100 @@ async def download(resp, queue):
|
||||
buf += data
|
||||
continue
|
||||
else:
|
||||
# Assemble JPEG blob
|
||||
blob = buf + data[:marker + 2]
|
||||
app.ctx.last_frame = Frame(buf + data[:marker+2])
|
||||
gauge_last_frame.set(time())
|
||||
|
||||
# Parse DCT coefficients
|
||||
try:
|
||||
dct = loads(blob)
|
||||
except RuntimeError:
|
||||
counter_frames.labels("corrupted").inc()
|
||||
reference = app.ctx.last_frame.mask
|
||||
app.ctx.frames.append(reference)
|
||||
if app.ctx.avg is None:
|
||||
app.ctx.avg = np.copy(reference)
|
||||
else:
|
||||
now = datetime.utcnow()
|
||||
gauge_last_frame.labels("download").set(now.timestamp())
|
||||
try:
|
||||
queue.put_nowait((
|
||||
now,
|
||||
blob,
|
||||
dct,
|
||||
generate_thumbnail(dct)))
|
||||
except asyncio.QueueFull:
|
||||
counter_dropped_frames.labels("download").inc()
|
||||
app.ctx.avg += reference
|
||||
|
||||
if len(app.ctx.frames) > 2 ** SLIDE_WINDOW:
|
||||
app.ctx.avg -= app.ctx.frames[0]
|
||||
app.ctx.frames = app.ctx.frames[1:]
|
||||
|
||||
if len(app.ctx.frames) == 2 ** SLIDE_WINDOW:
|
||||
app.ctx.thresh = cv2.inRange(cv2.absdiff(
|
||||
app.ctx.last_frame.mask,
|
||||
app.ctx.avg >> SLIDE_WINDOW), 25, 65535)
|
||||
else:
|
||||
counter_frames.labels("downloaded").inc()
|
||||
gauge_queue_frames.labels("download").set(queue.qsize())
|
||||
data = data[marker + 2:]
|
||||
app.ctx.thresh = None
|
||||
gauge_total_blocks.set(app.ctx.last_frame.mask.shape[0] *
|
||||
app.ctx.last_frame.mask.shape[1])
|
||||
|
||||
movement_detected = False
|
||||
if app.ctx.thresh is not None:
|
||||
differing_blocks = np.count_nonzero(app.ctx.thresh)
|
||||
gauge_active_blocks.set(differing_blocks)
|
||||
if differing_blocks > THRESHOLD_BLOCKS:
|
||||
counter_movement_frames.inc()
|
||||
movement_detected = True
|
||||
|
||||
if movement_detected:
|
||||
if app.ctx.motion_frames < 30:
|
||||
app.ctx.motion_frames += 1
|
||||
else:
|
||||
if app.ctx.motion_frames > 0:
|
||||
app.ctx.motion_frames -= 1
|
||||
|
||||
if app.ctx.motion_frames > 20:
|
||||
if not app.ctx.motion_start:
|
||||
app.ctx.motion_start = datetime.utcnow()
|
||||
print("Movement start")
|
||||
elif app.ctx.motion_frames < 5:
|
||||
app.ctx.motion_start = None
|
||||
print("Movement end")
|
||||
|
||||
app.ctx.event_frame.set()
|
||||
app.ctx.event_frame.clear()
|
||||
|
||||
data = data[marker+2:]
|
||||
buf = b""
|
||||
counter_receive_frames.inc()
|
||||
counter_rx_frames.inc()
|
||||
|
||||
# seek begin
|
||||
marker = data.rfind(b"\xff\xd8")
|
||||
marker = data.find(b"\xff\xd8")
|
||||
if marker >= 0:
|
||||
buf = data[marker:]
|
||||
else:
|
||||
counter_discarded_bytes.inc(len(data))
|
||||
counter_dropped_bytes.inc(len(data))
|
||||
|
||||
|
||||
async def downloader(queue: asyncio.Queue):
|
||||
"""
|
||||
Downloader task connects to MJPEG source and
|
||||
pushes the JPEG frames to download queue
|
||||
"""
|
||||
async def client():
|
||||
while True:
|
||||
to = aiohttp.ClientTimeout(connect=5, sock_read=2)
|
||||
async with aiohttp.ClientSession(timeout=to) as session:
|
||||
logger.info("Opening connection to %s", target)
|
||||
print("Opening upstream connection to %s" % url)
|
||||
try:
|
||||
async with session.get(target) as resp:
|
||||
await download(resp, queue)
|
||||
async with session.get(url) as resp:
|
||||
await client_connect(resp)
|
||||
except (aiohttp.ClientError, asyncio.exceptions.TimeoutError) as e:
|
||||
j = "%s.%s" % (e.__class__.__module__, e.__class__.__name__)
|
||||
logger.info("Caught exception %s", j)
|
||||
counter_errors.labels("download", j).inc()
|
||||
print("Caught exception %s" % j)
|
||||
counter_errors.labels(exception=j).inc()
|
||||
await asyncio.sleep(1)
|
||||
|
||||
app = Sanic("camdetect")
|
||||
setup_json_logging(app)
|
||||
|
||||
app = Sanic("lease")
|
||||
app.config["WTF_CSRF_ENABLED"] = False
|
||||
|
||||
|
||||
@app.route("/bypass")
|
||||
async def bypass_stream_wrapper(request):
|
||||
# Desired frame interval, by default 500ms
|
||||
interval = float(request.args.get("interval", 500)) / 1000.0
|
||||
|
||||
async def stream_camera(response):
|
||||
ts = 0
|
||||
while True:
|
||||
while True:
|
||||
await app.ctx.event_frame.wait()
|
||||
if time() > ts + interval:
|
||||
break
|
||||
ts = time()
|
||||
data = CHUNK_BOUNDARY + app.ctx.last_frame
|
||||
data = CHUNK_BOUNDARY + app.ctx.last_frame.blob
|
||||
await response.write(data)
|
||||
counter_transmit_bytes.inc(len(data))
|
||||
counter_transmit_frames.inc()
|
||||
counter_tx_bytes.inc(len(data))
|
||||
counter_tx_frames.inc()
|
||||
|
||||
return response.stream(
|
||||
stream_camera,
|
||||
content_type="multipart/x-mixed-replace; boundary=frame")
|
||||
content_type="multipart/x-mixed-replace; boundary=frame"
|
||||
)
|
||||
|
||||
|
||||
@app.route("/debug")
|
||||
@ -475,30 +189,21 @@ async def stream_wrapper(request):
|
||||
async def stream_camera(response):
|
||||
while True:
|
||||
await app.ctx.event_frame.wait()
|
||||
|
||||
# Parse JPEG blob
|
||||
arr = np.frombuffer(app.ctx.last_frame, dtype=np.uint8)
|
||||
arr = np.frombuffer(app.ctx.last_frame.blob, dtype=np.uint8)
|
||||
img = cv2.imdecode(arr, cv2.IMREAD_UNCHANGED)
|
||||
if len(app.ctx.frames) == 2 ** SLIDE_WINDOW:
|
||||
for y in range(0, len(app.ctx.last_frame.mask)):
|
||||
for x in range(0, len(app.ctx.last_frame.mask[0])):
|
||||
if app.ctx.thresh[y][x] > 0:
|
||||
img[y*DCT_BLOCK_SIZE:(y+1)*DCT_BLOCK_SIZE,
|
||||
x*DCT_BLOCK_SIZE:(x+1)*DCT_BLOCK_SIZE, 2] = 255
|
||||
|
||||
# Highlight green or red channel depending on whether
|
||||
# motion event is in progress or not
|
||||
channel = 2 if app.ctx.event_id else 1
|
||||
if app.ctx.mask is not None:
|
||||
for y in range(0, app.ctx.mask.shape[0]):
|
||||
for x in range(0, app.ctx.mask.shape[1]):
|
||||
if app.ctx.mask[y][x] > 0:
|
||||
img[y * DCT_BLOCK_SIZE:(y + 1) * DCT_BLOCK_SIZE,
|
||||
x * DCT_BLOCK_SIZE:(x + 1) * DCT_BLOCK_SIZE,
|
||||
channel] = 255
|
||||
|
||||
# Compress modified frame as JPEG frame
|
||||
_, jpeg = cv2.imencode(".jpg", img, (cv2.IMWRITE_JPEG_QUALITY, 80))
|
||||
data = CHUNK_BOUNDARY + jpeg.tobytes()
|
||||
await response.write(data)
|
||||
counter_transmit_bytes.inc(len(data))
|
||||
counter_transmit_frames.inc()
|
||||
counter_tx_bytes.inc(len(data))
|
||||
counter_tx_frames.inc()
|
||||
|
||||
# Transmit as chunked MJPEG stream
|
||||
return response.stream(
|
||||
stream_camera,
|
||||
content_type="multipart/x-mixed-replace; boundary=frame"
|
||||
@ -507,31 +212,8 @@ async def stream_wrapper(request):
|
||||
|
||||
@app.route("/readyz")
|
||||
async def ready_check(request):
|
||||
logger.info("Testing if Mongo is accessible")
|
||||
try:
|
||||
async for i in app.ctx.coll.find().limit(1):
|
||||
break
|
||||
except pymongo.errors.ServerSelectionTimeoutError:
|
||||
return response.text("MongoDB server selection timeout", status=503)
|
||||
|
||||
session = aioboto3.Session()
|
||||
logger.info("Testing if S3 is writable")
|
||||
async with session.resource("s3",
|
||||
aws_access_key_id=AWS_ACCESS_KEY_ID,
|
||||
aws_secret_access_key=AWS_SECRET_ACCESS_KEY,
|
||||
endpoint_url=S3_ENDPOINT_URL) as s3:
|
||||
bucket = await s3.Bucket(S3_BUCKET_NAME)
|
||||
await bucket.upload_fileobj(io.BytesIO(b"test"), "test")
|
||||
if len(app.ctx.frames) == 2 ** SLIDE_WINDOW:
|
||||
return response.text("OK")
|
||||
|
||||
print("Checking if there are any frames received")
|
||||
if app.ctx.mask is None:
|
||||
return response.text("Not enough frames", status=503)
|
||||
|
||||
|
||||
@app.route("/healthz")
|
||||
async def health_check(request):
|
||||
if app.ctx.mask is None:
|
||||
return response.text("Not enough frames", status=503)
|
||||
|
||||
|
||||
@ -540,50 +222,28 @@ async def wrapper_stream_event(request):
|
||||
async def stream_event(response):
|
||||
while True:
|
||||
await app.ctx.event_frame.wait()
|
||||
if app.ctx.mask is not None:
|
||||
if len(app.ctx.frames) < 2 ** SLIDE_WINDOW:
|
||||
continue
|
||||
s = "data: " + json.dumps(app.ctx.mask.tolist()) + "\r\n\r\n"
|
||||
s = "data: " + json.dumps(app.ctx.thresh.tolist()) + "\r\n\r\n"
|
||||
await response.write(s.encode())
|
||||
counter_emitted_events.inc()
|
||||
counter_tx_events.inc()
|
||||
return stream(stream_event, content_type="text/event-stream")
|
||||
|
||||
|
||||
def handler(signum, frame):
|
||||
# SIGUSR1 handler for manually triggering an event
|
||||
app.ctx.manual_trigger = True
|
||||
|
||||
|
||||
@app.listener("before_server_start")
|
||||
async def setup_db(app, loop):
|
||||
app.ctx.mask = None
|
||||
app.ctx.db = AsyncIOMotorClient(MONGO_URI).get_default_database()
|
||||
app.ctx.coll = app.ctx.db[MONGO_COLLECTION]
|
||||
app.ctx.coll.create_index(
|
||||
"@timestamp", expireAfterSeconds=TTL_DAYS * 60 * 60 * 24)
|
||||
app.ctx.coll.create_index([
|
||||
("source", pymongo.ASCENDING),
|
||||
("@timestamp", pymongo.ASCENDING)], unique=True)
|
||||
app.ctx.last_frame = None
|
||||
app.ctx.event_frame = asyncio.Event()
|
||||
app.ctx.event_id = None
|
||||
app.ctx.manual_trigger = False
|
||||
signal.signal(signal.SIGUSR1, handler)
|
||||
|
||||
# Set up processing pipeline
|
||||
download_queue = asyncio.Queue(50)
|
||||
upload_queue = asyncio.Queue(50)
|
||||
asyncio.create_task(uploader(
|
||||
upload_queue))
|
||||
asyncio.create_task(downloader(
|
||||
download_queue))
|
||||
asyncio.create_task(motion_detector(
|
||||
ReferenceFrame(),
|
||||
download_queue,
|
||||
upload_queue))
|
||||
|
||||
app.ctx.frames = []
|
||||
app.ctx.avg = None
|
||||
app.ctx.motion_frames = 0
|
||||
app.ctx.motion_start = None
|
||||
app.ctx.motion_end = None
|
||||
asyncio.create_task(client())
|
||||
|
||||
monitor(app).expose_endpoint()
|
||||
|
||||
app.run(host="0.0.0.0",
|
||||
port=5000,
|
||||
debug=bool(os.getenv("DEBUG", 0)))
|
||||
try:
|
||||
app.run(host="0.0.0.0", port=5000)
|
||||
except KeyboardInterrupt:
|
||||
asyncio.get_event_loop().close()
|
||||
|
@ -1,20 +1,7 @@
|
||||
version: '3.7'
|
||||
|
||||
# All keys here are for dev instance only, do not put prod keys here
|
||||
x-common: &common
|
||||
AWS_ACCESS_KEY_ID: camdetect
|
||||
MINIO_ROOT_USER: camdetect
|
||||
AWS_SECRET_ACCESS_KEY: 2mSI6HdbJ8
|
||||
MINIO_ROOT_PASSWORD: 2mSI6HdbJ8
|
||||
ME_CONFIG_MONGODB_ENABLE_ADMIN: 'true'
|
||||
ME_CONFIG_MONGODB_SERVER: '127.0.0.1'
|
||||
ME_CONFIG_MONGODB_AUTH_DATABASE: admin
|
||||
MINIO_DEFAULT_BUCKETS: camdetect
|
||||
MINIO_URI: 'http://camdetect:2mSI6HdbJ8@127.0.0.1:9000/camdetect'
|
||||
S3_ENDPOINT_URL: http://127.0.0.1:9000
|
||||
MINIO_CONSOLE_PORT_NUMBER: 9001
|
||||
MJPEGSTREAMER_CREDENTIALS: user:123456
|
||||
SOURCE_NAME: dummy
|
||||
# To override and use inventory from prod use .env file
|
||||
|
||||
services:
|
||||
camdetect:
|
||||
@ -24,13 +11,18 @@ services:
|
||||
context: .
|
||||
entrypoint: /app/camdetect.py
|
||||
command: http://user:123456@127.0.0.1:8080?action=stream
|
||||
environment: *common
|
||||
environment:
|
||||
- MJPEGSTREAMER_CREDENTIALS=user:123456
|
||||
env_file: .env
|
||||
|
||||
mongoexpress:
|
||||
restart: always
|
||||
image: mongo-express
|
||||
network_mode: host
|
||||
environment: *common
|
||||
environment:
|
||||
- ME_CONFIG_MONGODB_ENABLE_ADMIN=true
|
||||
- ME_CONFIG_MONGODB_SERVER=127.0.0.1
|
||||
- ME_CONFIG_MONGODB_AUTH_DATABASE=admin
|
||||
logging:
|
||||
driver: none
|
||||
|
||||
@ -50,16 +42,16 @@ services:
|
||||
- --config.file=/config/prometheus.yml
|
||||
volumes:
|
||||
- ./config:/config:ro
|
||||
logging:
|
||||
driver: none
|
||||
|
||||
minio:
|
||||
restart: always
|
||||
network_mode: host
|
||||
image: bitnami/minio:latest
|
||||
environment: *common
|
||||
logging:
|
||||
driver: none
|
||||
environment:
|
||||
- MINIO_ACCESS_KEY=kspace-mugshot
|
||||
- MINIO_SECRET_KEY=2mSI6HdbJ8
|
||||
- MINIO_DEFAULT_BUCKETS=kspace-mugshot:download
|
||||
- MINIO_CONSOLE_PORT_NUMBER=9001
|
||||
|
||||
mjpg-streamer:
|
||||
network_mode: host
|
||||
@ -67,17 +59,4 @@ services:
|
||||
image: kvaps/mjpg-streamer
|
||||
devices:
|
||||
- /dev/video0
|
||||
command: -i "/usr/lib64/input_uvc.so -y -d /dev/video0 -r 1280x720 -f 5" -o "output_http.so -c user:123456"
|
||||
|
||||
log-viewer-backend:
|
||||
restart: always
|
||||
network_mode: host
|
||||
build:
|
||||
context: ./log-viewer/backend
|
||||
environment: *common
|
||||
|
||||
log-viewer-frontend:
|
||||
restart: always
|
||||
network_mode: host
|
||||
build:
|
||||
context: ./log-viewer/frontend
|
||||
command: -i "/usr/lib64/input_uvc.so -y -d /dev/video0 -r 1280x720 -f 30" -o "output_http.so -c user:123456"
|
||||
|
@ -1 +0,0 @@
|
||||
Subproject commit b8e9f03b86ff63a5cdc77bae18caf7d7efd077b9
|
@ -1,4 +1,11 @@
|
||||
#!/bin/bash
|
||||
mongo <<EOF
|
||||
rs.initiate()
|
||||
|
||||
rs.initiate({
|
||||
_id: 'rs0',
|
||||
members: [
|
||||
{_id: 0, host: '127.0.0.1:27017'}
|
||||
]
|
||||
})
|
||||
|
||||
EOF
|
||||
|
Loading…
Reference in New Issue
Block a user