89 lines
2.5 KiB
Go
89 lines
2.5 KiB
Go
|
package stats
|
||
|
|
||
|
import (
|
||
|
"math"
|
||
|
)
|
||
|
|
||
|
// Validate data for distance calculation
|
||
|
func validateData(dataPointX, dataPointY Float64Data) error {
|
||
|
if len(dataPointX) == 0 || len(dataPointY) == 0 {
|
||
|
return EmptyInputErr
|
||
|
}
|
||
|
|
||
|
if len(dataPointX) != len(dataPointY) {
|
||
|
return SizeErr
|
||
|
}
|
||
|
return nil
|
||
|
}
|
||
|
|
||
|
// ChebyshevDistance computes the Chebyshev distance between two data sets
|
||
|
func ChebyshevDistance(dataPointX, dataPointY Float64Data) (distance float64, err error) {
|
||
|
err = validateData(dataPointX, dataPointY)
|
||
|
if err != nil {
|
||
|
return math.NaN(), err
|
||
|
}
|
||
|
var tempDistance float64
|
||
|
for i := 0; i < len(dataPointY); i++ {
|
||
|
tempDistance = math.Abs(dataPointX[i] - dataPointY[i])
|
||
|
if distance < tempDistance {
|
||
|
distance = tempDistance
|
||
|
}
|
||
|
}
|
||
|
return distance, nil
|
||
|
}
|
||
|
|
||
|
// EuclideanDistance computes the Euclidean distance between two data sets
|
||
|
func EuclideanDistance(dataPointX, dataPointY Float64Data) (distance float64, err error) {
|
||
|
|
||
|
err = validateData(dataPointX, dataPointY)
|
||
|
if err != nil {
|
||
|
return math.NaN(), err
|
||
|
}
|
||
|
distance = 0
|
||
|
for i := 0; i < len(dataPointX); i++ {
|
||
|
distance = distance + ((dataPointX[i] - dataPointY[i]) * (dataPointX[i] - dataPointY[i]))
|
||
|
}
|
||
|
return math.Sqrt(distance), nil
|
||
|
}
|
||
|
|
||
|
// ManhattanDistance computes the Manhattan distance between two data sets
|
||
|
func ManhattanDistance(dataPointX, dataPointY Float64Data) (distance float64, err error) {
|
||
|
err = validateData(dataPointX, dataPointY)
|
||
|
if err != nil {
|
||
|
return math.NaN(), err
|
||
|
}
|
||
|
distance = 0
|
||
|
for i := 0; i < len(dataPointX); i++ {
|
||
|
distance = distance + math.Abs(dataPointX[i]-dataPointY[i])
|
||
|
}
|
||
|
return distance, nil
|
||
|
}
|
||
|
|
||
|
// MinkowskiDistance computes the Minkowski distance between two data sets
|
||
|
//
|
||
|
// Arguments:
|
||
|
// dataPointX: First set of data points
|
||
|
// dataPointY: Second set of data points. Length of both data
|
||
|
// sets must be equal.
|
||
|
// lambda: aka p or city blocks; With lambda = 1
|
||
|
// returned distance is manhattan distance and
|
||
|
// lambda = 2; it is euclidean distance. Lambda
|
||
|
// reaching to infinite - distance would be chebysev
|
||
|
// distance.
|
||
|
// Return:
|
||
|
// Distance or error
|
||
|
func MinkowskiDistance(dataPointX, dataPointY Float64Data, lambda float64) (distance float64, err error) {
|
||
|
err = validateData(dataPointX, dataPointY)
|
||
|
if err != nil {
|
||
|
return math.NaN(), err
|
||
|
}
|
||
|
for i := 0; i < len(dataPointY); i++ {
|
||
|
distance = distance + math.Pow(math.Abs(dataPointX[i]-dataPointY[i]), lambda)
|
||
|
}
|
||
|
distance = math.Pow(distance, 1/lambda)
|
||
|
if math.IsInf(distance, 1) {
|
||
|
return math.NaN(), InfValue
|
||
|
}
|
||
|
return distance, nil
|
||
|
}
|