Add ent autogenerated code

Signed-off-by: m.nabokikh <maksim.nabokikh@flant.com>
This commit is contained in:
m.nabokikh
2021-01-02 00:34:47 +04:00
parent 11859166d0
commit 2e61860d5a
84 changed files with 39313 additions and 1 deletions

View File

@@ -0,0 +1,45 @@
// Code generated by entc, DO NOT EDIT.
package keys
const (
// Label holds the string label denoting the keys type in the database.
Label = "keys"
// FieldID holds the string denoting the id field in the database.
FieldID = "id"
// FieldVerificationKeys holds the string denoting the verification_keys field in the database.
FieldVerificationKeys = "verification_keys"
// FieldSigningKey holds the string denoting the signing_key field in the database.
FieldSigningKey = "signing_key"
// FieldSigningKeyPub holds the string denoting the signing_key_pub field in the database.
FieldSigningKeyPub = "signing_key_pub"
// FieldNextRotation holds the string denoting the next_rotation field in the database.
FieldNextRotation = "next_rotation"
// Table holds the table name of the keys in the database.
Table = "keys"
)
// Columns holds all SQL columns for keys fields.
var Columns = []string{
FieldID,
FieldVerificationKeys,
FieldSigningKey,
FieldSigningKeyPub,
FieldNextRotation,
}
// ValidColumn reports if the column name is valid (part of the table columns).
func ValidColumn(column string) bool {
for i := range Columns {
if column == Columns[i] {
return true
}
}
return false
}
var (
// IDValidator is a validator for the "id" field. It is called by the builders before save.
IDValidator func(string) error
)

View File

@@ -0,0 +1,208 @@
// Code generated by entc, DO NOT EDIT.
package keys
import (
"time"
"github.com/dexidp/dex/storage/ent/db/predicate"
"github.com/facebook/ent/dialect/sql"
)
// ID filters vertices based on their ID field.
func ID(id string) predicate.Keys {
return predicate.Keys(func(s *sql.Selector) {
s.Where(sql.EQ(s.C(FieldID), id))
})
}
// IDEQ applies the EQ predicate on the ID field.
func IDEQ(id string) predicate.Keys {
return predicate.Keys(func(s *sql.Selector) {
s.Where(sql.EQ(s.C(FieldID), id))
})
}
// IDNEQ applies the NEQ predicate on the ID field.
func IDNEQ(id string) predicate.Keys {
return predicate.Keys(func(s *sql.Selector) {
s.Where(sql.NEQ(s.C(FieldID), id))
})
}
// IDIn applies the In predicate on the ID field.
func IDIn(ids ...string) predicate.Keys {
return predicate.Keys(func(s *sql.Selector) {
// if not arguments were provided, append the FALSE constants,
// since we can't apply "IN ()". This will make this predicate falsy.
if len(ids) == 0 {
s.Where(sql.False())
return
}
v := make([]interface{}, len(ids))
for i := range v {
v[i] = ids[i]
}
s.Where(sql.In(s.C(FieldID), v...))
})
}
// IDNotIn applies the NotIn predicate on the ID field.
func IDNotIn(ids ...string) predicate.Keys {
return predicate.Keys(func(s *sql.Selector) {
// if not arguments were provided, append the FALSE constants,
// since we can't apply "IN ()". This will make this predicate falsy.
if len(ids) == 0 {
s.Where(sql.False())
return
}
v := make([]interface{}, len(ids))
for i := range v {
v[i] = ids[i]
}
s.Where(sql.NotIn(s.C(FieldID), v...))
})
}
// IDGT applies the GT predicate on the ID field.
func IDGT(id string) predicate.Keys {
return predicate.Keys(func(s *sql.Selector) {
s.Where(sql.GT(s.C(FieldID), id))
})
}
// IDGTE applies the GTE predicate on the ID field.
func IDGTE(id string) predicate.Keys {
return predicate.Keys(func(s *sql.Selector) {
s.Where(sql.GTE(s.C(FieldID), id))
})
}
// IDLT applies the LT predicate on the ID field.
func IDLT(id string) predicate.Keys {
return predicate.Keys(func(s *sql.Selector) {
s.Where(sql.LT(s.C(FieldID), id))
})
}
// IDLTE applies the LTE predicate on the ID field.
func IDLTE(id string) predicate.Keys {
return predicate.Keys(func(s *sql.Selector) {
s.Where(sql.LTE(s.C(FieldID), id))
})
}
// NextRotation applies equality check predicate on the "next_rotation" field. It's identical to NextRotationEQ.
func NextRotation(v time.Time) predicate.Keys {
return predicate.Keys(func(s *sql.Selector) {
s.Where(sql.EQ(s.C(FieldNextRotation), v))
})
}
// NextRotationEQ applies the EQ predicate on the "next_rotation" field.
func NextRotationEQ(v time.Time) predicate.Keys {
return predicate.Keys(func(s *sql.Selector) {
s.Where(sql.EQ(s.C(FieldNextRotation), v))
})
}
// NextRotationNEQ applies the NEQ predicate on the "next_rotation" field.
func NextRotationNEQ(v time.Time) predicate.Keys {
return predicate.Keys(func(s *sql.Selector) {
s.Where(sql.NEQ(s.C(FieldNextRotation), v))
})
}
// NextRotationIn applies the In predicate on the "next_rotation" field.
func NextRotationIn(vs ...time.Time) predicate.Keys {
v := make([]interface{}, len(vs))
for i := range v {
v[i] = vs[i]
}
return predicate.Keys(func(s *sql.Selector) {
// if not arguments were provided, append the FALSE constants,
// since we can't apply "IN ()". This will make this predicate falsy.
if len(v) == 0 {
s.Where(sql.False())
return
}
s.Where(sql.In(s.C(FieldNextRotation), v...))
})
}
// NextRotationNotIn applies the NotIn predicate on the "next_rotation" field.
func NextRotationNotIn(vs ...time.Time) predicate.Keys {
v := make([]interface{}, len(vs))
for i := range v {
v[i] = vs[i]
}
return predicate.Keys(func(s *sql.Selector) {
// if not arguments were provided, append the FALSE constants,
// since we can't apply "IN ()". This will make this predicate falsy.
if len(v) == 0 {
s.Where(sql.False())
return
}
s.Where(sql.NotIn(s.C(FieldNextRotation), v...))
})
}
// NextRotationGT applies the GT predicate on the "next_rotation" field.
func NextRotationGT(v time.Time) predicate.Keys {
return predicate.Keys(func(s *sql.Selector) {
s.Where(sql.GT(s.C(FieldNextRotation), v))
})
}
// NextRotationGTE applies the GTE predicate on the "next_rotation" field.
func NextRotationGTE(v time.Time) predicate.Keys {
return predicate.Keys(func(s *sql.Selector) {
s.Where(sql.GTE(s.C(FieldNextRotation), v))
})
}
// NextRotationLT applies the LT predicate on the "next_rotation" field.
func NextRotationLT(v time.Time) predicate.Keys {
return predicate.Keys(func(s *sql.Selector) {
s.Where(sql.LT(s.C(FieldNextRotation), v))
})
}
// NextRotationLTE applies the LTE predicate on the "next_rotation" field.
func NextRotationLTE(v time.Time) predicate.Keys {
return predicate.Keys(func(s *sql.Selector) {
s.Where(sql.LTE(s.C(FieldNextRotation), v))
})
}
// And groups predicates with the AND operator between them.
func And(predicates ...predicate.Keys) predicate.Keys {
return predicate.Keys(func(s *sql.Selector) {
s1 := s.Clone().SetP(nil)
for _, p := range predicates {
p(s1)
}
s.Where(s1.P())
})
}
// Or groups predicates with the OR operator between them.
func Or(predicates ...predicate.Keys) predicate.Keys {
return predicate.Keys(func(s *sql.Selector) {
s1 := s.Clone().SetP(nil)
for i, p := range predicates {
if i > 0 {
s1.Or()
}
p(s1)
}
s.Where(s1.P())
})
}
// Not applies the not operator on the given predicate.
func Not(p predicate.Keys) predicate.Keys {
return predicate.Keys(func(s *sql.Selector) {
p(s.Not())
})
}