This document covers setting up the [Kubernetes OpenID Connect token authenticator plugin][k8s-oidc] with dex.
Token responses from OpenID Connect providers include a signed JWT called an ID Token. ID Tokens contain names, emails, unique identifiers, and in dex's case, a set of groups that can be used to identify the user. OpenID Connect providers, like dex, publish public keys; the Kubernetes API server understands how to use these to verify ID Tokens.
The authentication flow looks like:
1. OAuth2 client logs a user in through dex.
2. That client uses the returned ID Token as a bearer token when talking to the Kubernetes API.
3. Kubernetes uses dex's public keys to verify the ID Token.
4. A claim designated as the username (and optionally group information) will be associated with that request.
Username and group information can be combined with Kubernetes [authorization plugins][k8s-authz], such as roles based access control (RBAC), to enforce policy.
* Custom CA files must be accessible by the API server (likely through volume mounts).
* Dex is accessible to both your browser and the Kubernetes API server.
Use the following flags to point your API server(s) at dex. `dex.example.com` should be replaced by whatever DNS name or IP address dex is running under.
```
--oidc-issuer-url=https://dex.example.com:32000
--oidc-client-id=example-app
--oidc-ca-file=/etc/kubernetes/ssl/openid-ca.pem
--oidc-username-claim=email
--oidc-groups-claim=groups
```
Additional notes:
* The API server configured with OpenID Connect flags doesn't require dex to be available upfront.
* Other authenticators, such as client certs, can still be used.
* Dex doesn't need to be running when you start your API server.
* Kubernetes only trusts ID Tokens issued to a single client.
* As a work around dex allows clients to [trust other clients][trusted-peers] to mint tokens on their behalf.
* If a claim other than "email" is used for username, for example "sub", it will be prefixed by `"(value of --oidc-issuer-url)#"`. This is to namespace user controlled claims which may be used for privilege escalation.
## Deploying dex on Kubernetes
The dex repo contains scripts for running dex on a Kubernetes cluster with authentication through GitHub. The dex service is exposed using a [node port][node-port] on port 32000. This likely requires a custom `/etc/hosts` entry pointed at one of the cluster's workers.
Because dex uses `ThirdPartyResources` to store state, no external database is needed. For more details see the [storage documentation](storage.md#kubernetes-third-party-resources).
There are many different ways to spin up a Kubernetes development cluster, each with different host requirements and support for API server reconfiguration. At this time, this guide does not have copy-pastable examples, but can recommend the following methods for spinning up a cluster:
* [coreos-kubernetes][coreos-kubernetes] repo for vagrant and VirtualBox users.
* [coreos-baremetal][coreos-baremetal] repo for Linux QEMU/KVM users.
To run dex on Kubernetes perform the following steps:
1. Generate TLS assets for dex.
2. Spin up a Kubernetes cluster with the appropriate flags and CA volume mount.
3. Create a secret containing your [GitHub OAuth2 client credentials][github-oauth2].
The created `ssl/ca.pem` must then be mounted into your API server deployment. Once the cluster is up and correctly configured, use kubectl to add the serving certs as secrets.
__Caveats:__ No health checking is configured because dex does its own TLS termination complicating the setup. This is a known issue and can be tracked [here][dex-healthz].
The `example-app` can be used to log into the cluster and get an ID Token. To build the app, you can run `make` in the root of the repo and it will build the `example-app` binary in the repo's `bin` directory. To build the `example-app` requires at least a 1.7 version of Go.
The default redirect uri is http://127.0.0.1:5555/callback and can be changed with the `--redirect-uri` flag and should correspond with your configmap.